you move first the number without the variable to the other side with the opposite sign
-0.75p=0.25+2
-0.75p=2.25
then as -0.75 is multiplying you pass it to the other side dividing
p=2.25/-0.75
p=-3
Answer:
The gambler's fallacy, also known as the Monte Carlo fallacy or the fallacy of the maturity of chances, is the erroneous belief that if a particular event occurs more frequently than normal during the past it is less likely to happen in the future (or vice versa), when it has otherwise been established that the probability of such events does not depend on what has happened in the past. Such events, having the quality of historical independence, are referred to as statistically independent. The fallacy is commonly associated with gambling, where it may be believed, for example, that the next dice roll is more than usually likely to be six because there have recently been fewer than the usual number of sixes.
The term "Monte Carlo fallacy" originates from the best known example of the phenomenon, which occurred in the Monte Carlo Casino in 1913.[1]
Answer:
6 tables.
Step-by-step explanation:
If he has 15 shelves, we can put the overall number of books off to the side for a moment. First calculate how many books he COULD put onto shelves. This would be 7*15, since each of fifteen shelves can hold 7 books. Counting by fifteens or using a calculator allows us to see that the shelves can hold 105 books.
Going back to the original number of books, we subtract 105 from the original value. The equation at this point is 231 - 105. The result is 126 books left to put on top of tables. But we're not done yet!
Since a table can hold 25 books, we need to divide the remaining number of books by 25. That would be 126/25. Doing this gives us 5 tables we would need, plus one book let over. Since we've run out of shelves, we MUST use another table just for the final book. That's 5+1, or 6 tables. Let's not forget to label our answer.
Translation:
5. A submarine is 420.5 m below sea level. The submarine dived 185.6 m deep and then climbed 200.9 m. Determine the new position of the submarine based on sea level.