Answer:
370
Step-by-step explanation:
Both rooms share a common side whose dimension is unknown. Call it x.
Then, the area of both squares have x as common factor.
So, x is the greatest common factor of 104 and 130.
You should know how to calculate the greatest common factor of two integers.
Just find the prime factors and choose the common factors raised to the lowest exponent.
104 = (2^3) (13)
130 = (2) (5)(13)
=> the greatest common factor is 2 * 13 = 26, and that is the greatest possible integer length of the shared wall.
Answer: 26
Answer:
x = 1048576
Step-by-step explanation:
Answer:
A
Step-by-step explanation:
This is a Bernoulli trial problem.
Since the probability that the seed will germinate is 80% or 0.8, the probability that they won’t germinate is 0.2
Now let’s say the probability to germinate is p and the probability not to is a, we can now set up the Bernoulli equation in this regard. Since we are proposing that exactly 14 will germinate, it means 6 are not expected to germinate
P(14) = 20C14 (0.8)^14 (0.2)^6 = 0.109099700973
Option A is the right answer
Answer:
D. 4
Step-by-step explanation:
![[(p^2) (q^{-3}) ]^{-2}.[(p)^{-3}(q)^5] ^{-2}\\\\=[(p^2) (q^{-3}) \times(p)^{-3}(q)^5 ]^{-2}\\\\=[(p^{2}) \times(p)^{-3} \times (q^{-3}) \times(q)^5 ]^{-2}\\\\=[(p^{2-3}) \times (q^{5-3}) ]^{-2}\\\\=[(p^{-1}) \times (q^{2}) ]^{-2}\\\\=(p^{-1\times (-2)}) \times (q^{2\times (-2) }) \\\\=p^{2}\times q^{-4} \\\\= \frac{p^2}{q^4}\\\\= \frac{(-2)^2}{(-1)^4}\\\\= \frac{4}{1}\\\\= 4](https://tex.z-dn.net/?f=%20%5B%28p%5E2%29%20%28q%5E%7B-3%7D%29%20%5D%5E%7B-2%7D.%5B%28p%29%5E%7B-3%7D%28q%29%5E5%5D%20%5E%7B-2%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%5B%28p%5E2%29%20%28q%5E%7B-3%7D%29%20%5Ctimes%28p%29%5E%7B-3%7D%28q%29%5E5%20%5D%5E%7B-2%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%5B%28p%5E%7B2%7D%29%20%5Ctimes%28p%29%5E%7B-3%7D%20%5Ctimes%20%28q%5E%7B-3%7D%29%20%5Ctimes%28q%29%5E5%20%5D%5E%7B-2%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%5B%28p%5E%7B2-3%7D%29%20%5Ctimes%20%28q%5E%7B5-3%7D%29%20%5D%5E%7B-2%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%5B%28p%5E%7B-1%7D%29%20%5Ctimes%20%28q%5E%7B2%7D%29%20%5D%5E%7B-2%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%28p%5E%7B-1%5Ctimes%20%28-2%29%7D%29%20%5Ctimes%20%28q%5E%7B2%5Ctimes%20%28-2%29%20%7D%29%20%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3Dp%5E%7B2%7D%5Ctimes%20q%5E%7B-4%7D%20%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%20%5Cfrac%7Bp%5E2%7D%7Bq%5E4%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%20%5Cfrac%7B%28-2%29%5E2%7D%7B%28-1%29%5E4%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%20%5Cfrac%7B4%7D%7B1%7D%5C%5C%5C%5C%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3D%204)