Answer:
Molecular formula
Explanation:
Molecular formula in the first place is required to understand which compound we have. We then should refer to the periodic table and find the molecular weight for each atom. Adding individual molecular weights together would yield the molar mass of a compound.
Then, dividing the total molar mass of a specific atom by the molar mass of a compound and converting into percentage will provide us with the percentage of that specific atom.
E. g., calculate the percent composition of water:
- molecular formula is
; - calculate its molar mass: [tex]M = 2M_H + M_O = 2\cdot 1.00784 g/mol + 16.00 g/mol = 18.016 g/mol;
- find the percentage of hydrogen: [tex]\omega_H = \frac{2\cdot 1.00784 g/mol}{18.016 g/mol}\cdot 100 \% = 11.19 %;
- find the percentage of oxygen: [tex]\omega_O = \frac{16.00 g/mol}{18.016 g/mol}\cdot 100 \% = 88.81 %.
The balanced equation is 2
AlI
3
(
a
q
)
+
3
Cl
2
(
g
)
→
2
AlCl
3
(
a
q
)
+
3
I
2
(
g
)
.
<u>Explanation:</u>
- Aluminum has a typical oxidation condition of 3+ , and that of iodine is 1- .
Along these lines, three iodides can bond with one aluminum. You get AlI3. For comparable reasons, aluminum chloride is AlCl3.
- Chlorine and iodine both exist normally as diatomic components, so they are Cl2( g ) also, I2( g ), individually. In spite of the fact that I would anticipate that iodine should be a strong.
Balancing the equation, we get:
2AlI
3( aq ) + 3Cl2
( g ) → 2AlCl3
( aq )
+ 3
I
2 ( g )
-
Realizing that there were two chlorines on the left, I simply found the basic numerous of 2 and 3 to be 6, and multiplied the AlCl 3 on the right.
-
Normally, presently we have two Al on the right, so I multiplied the AlI 3 on the left. Hence, I have 6 I on the left, and I needed to significantly increase I 2 on the right.
-
We should note, however, that aluminum iodide is viciously receptive in water except if it's a hexahydrate. In this way, it's most likely the anhydrous adaptation broke down in water, and the measure of warmth created may clarify why iodine is a vaporous item, and not a strong.