Given that <span>Line m is parallel to line n.
We prove that 1 is supplementary to 3 as follows:
![\begin{tabular} {|c|c|} Statement&Reason\\[1ex] Line m is parallel to line n&Given\\ \angle1\cong\angle2&Corresponding angles\\ m\angle1=m\angle2&Deifinition of Congruent angles\\ \angle2\ and\ \angle3\ form\ a\ linear\ pair&Adjacent angles on a straight line\\ \angle2\ is\ supplementary\ to\ \angle3&Deifinition of linear pair\\ m\angle2+m\angle3=180^o&Deifinition of supplementary \angle s\\ m\angle1+m\angle3=180^o&Substitution Property \end{tabular}](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%0A%7B%7Cc%7Cc%7C%7D%0AStatement%26Reason%5C%5C%5B1ex%5D%0ALine%20m%20is%20parallel%20to%20line%20n%26Given%5C%5C%0A%5Cangle1%5Ccong%5Cangle2%26Corresponding%20angles%5C%5C%0Am%5Cangle1%3Dm%5Cangle2%26Deifinition%20of%20Congruent%20angles%5C%5C%0A%5Cangle2%5C%20and%5C%20%5Cangle3%5C%20form%5C%20a%5C%20linear%5C%20pair%26Adjacent%20angles%20on%20a%20straight%20line%5C%5C%0A%5Cangle2%5C%20is%5C%20supplementary%5C%20to%5C%20%5Cangle3%26Deifinition%20of%20linear%20pair%5C%5C%0Am%5Cangle2%2Bm%5Cangle3%3D180%5Eo%26Deifinition%20of%20supplementary%20%5Cangle%20s%5C%5C%0Am%5Cangle1%2Bm%5Cangle3%3D180%5Eo%26Substitution%20Property%0A%5Cend%7Btabular%7D)

</span>
In a store, perhaps. People want it to be easy to shop, so it would be best for say, a top ramen package to be the same net weight as all the other top ramen packages. This makes it 1) easy to label and 2) easy to be confident buying, as it is exactly the same as all the others.
Answer:
The answer is letter B which is 6.
f(x) = -4x+2
f(x)=-4(-1)+2
f(x)=4+2
f(x)=6