The area and perimeter of the triangle is 2/5 square units and (2√10 + 4√5) / 5 units
<h3>Determining the perimeter and area of the triangle giving line equation</h3>
In order to determine the area and perimeter of the lines, we will plot the giving lines, determine the point of intersection and then use the Pythagoras theorem to determine the dimension of the right triangle.
The points of intersection of the line are;
(x₁, y₁) = (- 0.4, 5.2),
(x₂, y₂) = (-0.8, 4.4),
(x₃, y₃) = (0, 4)
Determine the base
b² = c² -a²
b = √(-0.8)² + (4 - 4.4)²
b = 2√5 / 5
Determine the height
h = √((- 0.4) - (- 0.8))² + (5.2 - 4.4)²
height = 2√5 / 5
For the hypotenuse
r = √2 · b
r = 2√10 / 5
<h3>Determine the Perimeter and area</h3>
Perimeter = s1+s2+s3
Perimeter = 2√5 / 5 + 2√5 / 5 + 2√10 / 5
Perimeter = (2√10 + 4√5) / 5 units
<u>For the area</u>
area = 1/2* base * height
A = 0.5 · (2√5 / 5) · (2√5 / 5)
A = 2/5 square units
Hence the area and perimeter of the triangle is 2/5 square units and (2√10 + 4√5) / 5 units
Learn more on area and perimeter of triangles here: brainly.com/question/12010318
#SPJ1
The equation in slope intercept form is y= 1x - 70
Firstly, let's take first factor:
(y^3)^2 = y^(3*2) = y^6
and then:
y^6 * y^7 = y^(6 + 7) = y^13
Answer:
We conclude that the machine is under filling the bags.
Step-by-step explanation:
We are given the following in the question:
Population mean, μ = 436.0 gram
Sample mean,
= 429.0 grams
Sample size, n = 40
Alpha, α = 0.05
Population standard deviation, σ = 23.0 grams
First, we design the null and the alternate hypothesis
We use one-tailed(left) z test to perform this hypothesis.
Formula:
Putting all the values, we have
Now,
Since,
We reject the null hypothesis and accept the alternate hypothesis. Thus, we conclude that the machine is under filling the bags.