Answer:
The nth term of the geometric sequence is given by;
, .....[1] n is the number of terms.
where,
is the first term and r is the common ratio of the terms.
As per the statement:
Given:
and ![a_2 = -125](https://tex.z-dn.net/?f=a_2%20%3D%20-125)
Using [1];
![a_2 = a_1 \cdot r](https://tex.z-dn.net/?f=a_2%20%3D%20a_1%20%5Ccdot%20r)
Substitute the value of
we have;
![-125 = 625 \cdot r](https://tex.z-dn.net/?f=-125%20%3D%20625%20%5Ccdot%20r)
Divide both sides by 625 we have;
![-\frac{1}{5} = r](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B5%7D%20%3D%20r)
or
![r= -\frac{1}{5}](https://tex.z-dn.net/?f=r%3D%20-%5Cfrac%7B1%7D%7B5%7D)
We have to find 7th term of the geometric sequence.
For n = 7 we have;
![a_7 = a_1 \cdot r^6](https://tex.z-dn.net/?f=a_7%20%3D%20a_1%20%5Ccdot%20r%5E6)
Substitute the given values we have;
![a_7 = 625 \cdot (-\frac{1}{5})^6 = \frac{625}{15625} = \frac{1}{25} =0.04](https://tex.z-dn.net/?f=a_7%20%3D%20625%20%5Ccdot%20%28-%5Cfrac%7B1%7D%7B5%7D%29%5E6%20%3D%20%5Cfrac%7B625%7D%7B15625%7D%20%3D%20%5Cfrac%7B1%7D%7B25%7D%20%3D0.04)
therefore, the 7th term of the geometric sequence is, 0.04