1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Travka [436]
3 years ago
5

when directed to solve a quadratic equation by completing the square, Sam arrived at the equation (x-(5/2))^2= (13/4). which equ

ation could have been the original equation given to Sam?
Mathematics
1 answer:
Tasya [4]3 years ago
7 0
We have the following expression:
 (x- (5/2)) ^ 2 = (13/4)
 Let's rewrite the given expression:
 x ^ 2 - 5x + 25/4 = (13/4)
 x ^ 2 - 5x + 25/4 - 13/4 = 0
 x ^ 2 - 5x + 12/4 = 0
 x ^ 2 - 5x + 3 = 0
 Answer:
 
the original equation given to Sam could have been:
 
x ^ 2 - 5x + 3 = 0
You might be interested in
Evaluate the limit
wel

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

3 0
2 years ago
Read 2 more answers
9/16 divided by 9 plz help thx for everyone that has helped me
Verizon [17]
0.5625 will be the answer to 9 divided by 16
3 0
3 years ago
Which equation is parallel to the line LaTeX: y=\frac{1}{2}x+3y = 1 2 x + 3and passes through the point (10, -5)?
sukhopar [10]

Answer:

Equation\ of\ line:\ y=\frac{1}{2}x-10

Step-by-step explanation:

Let\ the\ required\ equation\ is\ y=mx+c\\\\where\ m\ is\ the\ slope\ of\ the\ equation\ and\ c\ is\ y-intercept\\\\It\ is\ parallel\ to\ the\ equation\ y=\frac{1}{2}x+3\\\\Hence\ slope\ of\ these\ two\ lines\ will\ be\ same.\\\\Slope\ of\ y=\frac{1}{2}x+3\ is\ \frac{1}{2}\\\\Hence\ slope\ of\ y=mx+c\ is\ \frac{1}{2}\Rightarrow m=\frac{1}{2}\\\\Equation:y=\frac{1}{2}x+c\\\\Line\ passes\ through\ (10,-5).\ Hence\ this\ point\ satisfies\ the\ equation\ of\ line.\\\\-5=\frac{1}{2}\times 10+c

-5=-5+c\\\\c=-10

Equation\ of\ line:\ y=\frac{1}{2}x-10

8 0
3 years ago
Help me do examples for a function and a non function
bekas [8.4K]

Answer:

{(1,2) (3,4) (5,6)} and {(1,2) (1,4) (5,6)}

Step-by-step explanation:

you really want to think of a function as a vending machine. if you press B12 on a vending machine because thats where the chips are, only the chips should come out. in a function, the input value aka x (B12, what youre putting in) should only have one output value aka y, (the chips)

an example of a function would be {(1,2) (3,4) (5,6)}

an important thing to remember is that one output value can belong to multiple input values. there can be chips (output) in both B12 and C12 (inputs) BUT as i said before, there CANNOT be two outputs for one input. B12 cannot give you both chips and a drink.

using this, another example of a function would be {(1,2) (3,2) (5,2)}

an example of an non function would be {(1,2) (1,4) (5,6)} because x, the input value, has multiple output values which is not possible. the output of 1 can not be 2 and 4 at the same time which we can see in the (x,y) coordinates.

4 0
2 years ago
Evaluate the expression.<br><br><br><br><br><br> 2^1/2^4
tekilochka [14]
Your answer is <span><span>1^8
</span>
Hope this helps!</span>
6 0
3 years ago
Other questions:
  • Mariana, Pamela y Nancy decidieron comprar una consola de video juegos X Box y acordaron que cada una aportará 1/3 parte del cos
    15·1 answer
  • What is the measure of angle ABC?
    7·2 answers
  • A pyramid has a horizontal square base of 12cm. the vertex of the pyramid is 7cm vertically above the base. calculate, correct t
    7·1 answer
  • PLEASE HELP
    8·1 answer
  • RSM HW HELP!!! PLEASE HELP ME ASAP!!!! I WILL GIVE BRAINLIEST IF YOU SOLVE THEM ALL CORRECTLY!!! THANKS!
    10·2 answers
  • Can someone help me with this math homework please!
    6·2 answers
  • Someone help ill give brainliest to the person with an right answer!!!!!
    12·1 answer
  • 9X (5 + 3) =<br> + (9 X 3)
    13·1 answer
  • Error error error error
    10·2 answers
  • PLZ HURRY IT'S URGENT!!!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!