Let i = sqrt(-1) which is the conventional notation to set up an imaginary number
The idea is to break up the radicand, aka stuff under the square root, to simplify
sqrt(-8) = sqrt(-1*4*2)
sqrt(-8) = sqrt(-1)*sqrt(4)*sqrt(2)
sqrt(-8) = i*2*sqrt(2)
sqrt(-8) = 2i*sqrt(2)
<h3>Answer is choice A</h3>
Answer:
Following are the solution to the given equation:
Step-by-step explanation:
The graph file and correct question are defined in the attachment please find it.
According to the linear programming principle, we predict, that towards the intersections of the constraint points in the viability area, and its optimal solution exists. The sketch shows the points that are (0,16), (3,1), and (6,0).
by putting each point value into the objective function:
Thus, the objective of the function is reduced with a value of 183 at (3,1).
Answer: it's 375
Step-by-step explanation:
Answer:
H= 500 miles
Step-by-step explanation:
Cos(60)=h/1000
Answer:
8. 10%
9. 50%
10. 15%
Step-by-step explanation:
I am pretty sure I got it right otherwise I think I have a big problem