Answer:
Leg of an isosceles right triangle is 7.99 long.
Step-by-step explanation:
Given:
Length of the hypotenuse =11.31
To find:
Length of the leg of an isosceles right triangle =?
Solution:
According to Pythagorean's Theorem, we have
-----------------------------(1)
Here were are given as isosceles triangle, so the two sides will be of same length
So equation 1 can be rewritten as
![a^2 +a^2 = c^2](https://tex.z-dn.net/?f=a%5E2%20%2Ba%5E2%20%3D%20c%5E2)
![2a^2 = c^2](https://tex.z-dn.net/?f=2a%5E2%20%3D%20c%5E2)
Substituting the value of hypotenuse
![2a^2 = (11.31)^2](https://tex.z-dn.net/?f=2a%5E2%20%3D%20%2811.31%29%5E2)
![2a^2 = 127.91](https://tex.z-dn.net/?f=2a%5E2%20%3D%20127.91)
![a^2 = \frac{127.91}{2}](https://tex.z-dn.net/?f=a%5E2%20%3D%20%5Cfrac%7B127.91%7D%7B2%7D)
![a^2 =63.955](https://tex.z-dn.net/?f=a%5E2%20%3D63.955)
![a = \sqrt{63.955}](https://tex.z-dn.net/?f=a%20%3D%20%5Csqrt%7B63.955%7D)
a = 7.99