Answer:
600 minutes
Step-by-step explanation:
If we write both situations as an equation, we get:
y1 = 24 + 0.15x
<em>y1 </em><em>:</em><em> </em><em>total </em><em>cost </em><em>paid </em><em>in </em><em>first </em><em>plan</em>
<em>x </em><em>:</em><em> </em><em>total minutes </em><em>of </em><em>calls</em>
y2 = 0.19x
<em>y2 </em><em>:</em><em> </em><em>total </em><em>cost </em><em>in </em><em>second </em><em>plan</em>
<em>x:</em><em> </em><em>total </em><em>min</em><em>utes </em><em>of </em><em>call</em>
We are now looking for the situation where the total cost in the two plans is equal, so
y1 = y2
this gives
24 + 0.15x = 0.19x
<=> 0.04x = 24
<=> x = 600
The opposite of -1/2 is 1/2. If you put -1/2 in absolute value, then the answer is 1/2.
It will take 9 hours because 3 times 9 is 27
→ Solutions
⇒ Simplify <span><span><span>4<span>(<span>2a</span>)</span></span>+<span>7<span>(<span>−<span>4b</span></span>)</span></span></span>+<span><span>3c</span><span>(5)</span></span></span><span>⇒ </span><span><span><span><span><span>8a</span>+</span>−<span>28b</span></span>+<span>15<span>c
Answer
</span></span></span></span><span>⇒ </span><span>8a−28b</span><span>+</span><span>15c</span>
<u>old:</u> $16
<u>new:</u> $20
<u>percent increase</u>
-> formula: (new-old / old) x 100
(20-16 / 16) x 100
4/16 x 100
0.25 x 100
answer: 25% increase