Answer:
Step-by-step explanation:
Given that a basketball coach will select the members of a five-player team from among 9 players, including John and Peter.
Out of nine players five are chosen at random.
The team consists of John and Peter.
Hence we can sort 9 players as I group, John and Peter and II group 7 players.
Now the selection is 2 from I group and remaining 3 from II group.
Hence no of ways of selecting a team that includes both John and Peter=
=35
Total no of ways =
=126
=
=
Answer:
8%
Step-by-step explanation:
We will use the equation provided to solve this problem.

Lets plug in the values:
First, divide both sides by 800.
Multiply x by 1

Now, we multiply .08 by 100 to get our interest rate:
(.08)100 = 8
The interest rate is 8%
Answer:
<u>Given equation:</u>
<u>To find the y-intercept, evaluate the equation with x = 0:</u>
- y = 10*0 - 32
- y = 0 - 32
- y = -32
<u>To find the x-intercept, evaluate the equation with y = 0:</u>
- 0 = 10x - 32
- 10x = 32
- x = 32/10
- x = 3.2
This is a linear differential equation of first order. Solve this by integrating the coefficient of the y term and then raising e to the integrated coefficient to find the integrating factor, i.e. the integrating factor for this problem is e^(6x).
<span>Multiplying both sides of the equation by the integrating factor: </span>
<span>(y')e^(6x) + 6ye^(6x) = e^(12x) </span>
<span>The left side is the derivative of ye^(6x), hence </span>
<span>d/dx[ye^(6x)] = e^(12x) </span>
<span>Integrating </span>
<span>ye^(6x) = (1/12)e^(12x) + c where c is a constant </span>
<span>y = (1/12)e^(6x) + ce^(-6x) </span>
<span>Use the initial condition y(0)=-8 to find c: </span>
<span>-8 = (1/12) + c </span>
<span>c=-97/12 </span>
<span>Hence </span>
<span>y = (1/12)e^(6x) - (97/12)e^(-6x)</span>
The domain of the given graph is [−3, ∞) and the range is (−∞, 4].
We need to find the domain and range of the given graph.
<h3>What are the domain and range of the function?</h3>
The range of values that we are permitted to enter into our function is known as the domain of a function. The x values for a function like f make up this set (x). A function's range is the collection of values that it can take.
We can observe that the graph extends horizontally from −3 to the right without a bound, so the domain is [−3, ∞). The vertical extent of the graph is all range values 4 and below, so the range is (−∞, 4].
Therefore, the domain of the given graph is [−3, ∞) and the range is (−∞, 4].
To learn more about domain and range visit:
brainly.com/question/1632425.
#SPJ1