1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
love history [14]
3 years ago
8

What is a external factor

Mathematics
1 answer:
LenaWriter [7]3 years ago
4 0

Answer:

External factors that affect an organization may be political, economic, social or technological. The same internal factors that lead to an organization's success inevitably characterize that organization's relationship to the external environment in these broad areas.

Step-by-step explanation:

You might be interested in
Please help with these problems.
DiKsa [7]
13 should be b and
14 is a because geometric mean to have a common ratio
7 0
2 years ago
Express as a fraction or mixed number 1.5%
Svetlanka [38]

Answer:

3/2 g.oogle if you want the explanation of your work.

4 0
2 years ago
How does moving the place of a digit change its value
AlexFokin [52]
In the familiar decimal number system that we use every day, moving the place
of a digit changes its value by a power of 10 .

In a system of numbers to any other base, moving the place of a digit changes
its value by a power of whatever the base of that number system is.
6 0
3 years ago
I am learning about rate of change, please help
VashaNatasha [74]

Answer:

y=2

Step-by-step explanation:

4 0
2 years ago
Read 2 more answers
Using polar coordinates, evaluate the integral which gives the area which lies in the first quadrant below the line y=5 and betw
vfiekz [6]

First, complete the square in the equation for the second circle to determine its center and radius:

<em>x</em> ² - 10<em>x</em> + <em>y</em> ² = 0

<em>x</em> ² - 10<em>x</em> + 25 + <em>y </em>² = 25

(<em>x</em> - 5)² + <em>y</em> ² = 5²

So the second circle is centered at (5, 0) with radius 5, while the first circle is centered at the origin with radius √100 = 10.

Now convert each equation into polar coordinates, using

<em>x</em> = <em>r</em> cos(<em>θ</em>)

<em>y</em> = <em>r</em> sin(<em>θ</em>)

Then

<em>x</em> ² + <em>y</em> ² = 100   →   <em>r </em>² = 100   →   <em>r</em> = 10

<em>x</em> ² - 10<em>x</em> + <em>y</em> ² = 0   →   <em>r </em>² - 10 <em>r</em> cos(<em>θ</em>) = 0   →   <em>r</em> = 10 cos(<em>θ</em>)

<em>y</em> = 5   →   <em>r</em> sin(<em>θ</em>) = 5   →   <em>r</em> = 5 csc(<em>θ</em>)

See the attached graphic for a plot of the circles and line as well as the bounded region between them. The second circle is tangent to the larger one at the point (10, 0), and is also tangent to <em>y</em> = 5 at the point (0, 5).

Split up the region at 3 angles <em>θ</em>₁, <em>θ</em>₂, and <em>θ</em>₃, which denote the angles <em>θ</em> at which the curves intersect. They are

<em>θ</em>₁ = 0 … … … by solving 10 = 10 cos(<em>θ</em>)

<em>θ</em>₂ = <em>π</em>/6 … … by solving 10 = 5 csc(<em>θ</em>)

<em>θ</em>₃ = 5<em>π</em>/6  … the second solution to 10 = 5 csc(<em>θ</em>)

Then the area of the region is given by a sum of integrals:

\displaystyle \frac12\left(\left\{\int_0^{\frac\pi6}+\int_{\frac{5\pi}6}^{2\pi}\right\}\left(10^2-(10\cos(\theta))^2\right)\,\mathrm d\theta+\int_{\frac\pi6}^{\frac{5\pi}6}\left((5\csc(\theta))^2-(10\cos(\theta))^2\right)\,\mathrm d\theta\right)

=\displaystyle 50\left\{\int_0^{\frac\pi6}+\int_{\frac{5\pi}6}^{2\pi}\right\} \sin^2(\theta)\,\mathrm d\theta+\frac12\int_{\frac\pi6}^{\frac{5\pi}6}\left(25\csc^2(\theta) - 100\cos^2(\theta)\right)\,\mathrm d\theta

To compute the integrals, use the following identities:

sin²(<em>θ</em>) = (1 - cos(2<em>θ</em>)) / 2

cos²(<em>θ</em>) = (1 + cos(2<em>θ</em>)) / 2

and recall that

d(cot(<em>θ</em>))/d<em>θ</em> = -csc²(<em>θ</em>)

You should end up with an area of

=\displaystyle25\left(\left\{\int_0^{\frac\pi6}+\int_{\frac{5\pi}6}^{2\pi}\right\}(1-\cos(2\theta))\,\mathrm d\theta-\int_{\frac\pi6}^{\frac{5\pi}6}(1+\cos(2\theta))\,\mathrm d\theta\right)+\frac{25}2\int_{\frac\pi6}^{\frac{5\pi}6}\csc^2(\theta)\,\mathrm d\theta

=\boxed{25\sqrt3+\dfrac{125\pi}3}

We can verify this geometrically:

• the area of the larger circle is 100<em>π</em>

• the area of the smaller circle is 25<em>π</em>

• the area of the circular segment, i.e. the part of the larger circle that is bounded below by the line <em>y</em> = 5, has area 100<em>π</em>/3 - 25√3

Hence the area of the region of interest is

100<em>π</em> - 25<em>π</em> - (100<em>π</em>/3 - 25√3) = 125<em>π</em>/3 + 25√3

as expected.

3 0
2 years ago
Other questions:
  • If a store advertised a sale that gave customers a 1/4 discount, what is the fractional part of the original price that the cust
    9·2 answers
  • I want some help with this problem of simplification <br> l-58l
    5·1 answer
  • Help quickly! A student wants to report on the number of movies her friends watch each week. The collected data are below:
    11·1 answer
  • Choose the friendly number that is closest to 25,689
    12·1 answer
  • 4) The diameter of a circle measures 16 mm. What is the
    6·2 answers
  • TWO questions! PLEASE HELP ME!
    14·2 answers
  • PLEASE HELP ME!!!! ITS REALLY URGENT!
    11·2 answers
  • Find the volume: 8 cm 20 cm 12 cm <br>Answers: 960 cm 1920 cm 3 960 cm 2 240 cm​
    6·2 answers
  • Whoever guesses not only the song but the singer will get brainliest if there are any absurd answers they will be deleted.Which
    13·2 answers
  • Please answer it<br>!!!!!!!​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!