Answer:
The lever is a movable bar that pivots on a fulcrum attached to a fixed point. The lever operates by applying forces at different distances from the fulcrum, or a pivot. As the lever rotates around the fulcrum, points farther from this pivot move faster than points closer to the pivot.
IF HELPED MARK AS BRAINLIEST
To be referenced, it would be true
You know that when the displacement is equal to the amplitude (A), the velocity is zero, which implies that the kinetic energy (KE) is zeero, so the total mechanical energy (ME) is the potential energy (PE).
And you know that the potential energy, PE, is [ 1/2 ] k (x^2)
Then, use x = A, to calculate the PE in the point where ME = PE.
ME = PE = [1/2] k (A)^2.
At half of the amplitude, x = A/2 => PE = [ 1/2] k (A/2)^2
=> PE = [1/4] { [1/2]k(A)^2 } = .[1/4] ME
So, if PE is 1/4 of ME, KE is 3/4 of ME.
And the answer is 3/4
They discovered a vaccine to reduce illnesses, specifically Polio and Influenza. The work of Salk and Sabin has almost eradicated what was once a deadly disesase ( polio) . For example, there were 350,000 deaths related to poliovirus across the world in 1988 and they reduced to 22 in 2017. Also, their work has saved millions of lives from polio induced paralysis
The solution for the problem is:
Constant speed means Fnet = 0.
Let m = mass of wood block and Θ = angle of ramp; then if µk = 0.35 …
The computation would be:
Fnet = 0 = mg (sin Θ) - (µk) (mg) (cos Θ)
mg (sin Θ) = µk (mg) (cos Θ)
µk = tan Θ
Θ = arctan(µk)
= arctan (0.35)
≈ 19.3°