The solution depends on the value of

. To make things simple, assume

. The homogeneous part of the equation is

and has characteristic equation

which admits the characteristic solution

.
For the solution to the nonhomogeneous equation, a reasonable guess for the particular solution might be

. Then

So you have


This means


and so the general solution would be
Answer:
40x-24
3b(6c-3a+c)
Step-by-step explanation:
For the first one use distributive property and multiply each term by 8.
For the second one find a common factor which is 3b and divide all terms by that number.
Answer:
company A pays more, by the end of yr 10 they pay $9000 more
Step-by-step explanation:
Area is equal to length times width. The perimeter (the amount of rope) has to equal twice the length added to twice the width so we're left with:
A = l * w
200 = 2l + 2w
solve for either l or w
l = 100 - w
plug into the area equation to get one equation with two variables
A = w(100 - w)
A = -w^2 + 100w
take the derivative
A' = -2w + 100
set the derivative equal to zero
0 = -2w + 100
2w = 100
w = 50
This is the width that maximizes the area
with a width of 50, the length must also be 50 to have a perimeter of 200
therefore, they can rope up to 50 * 50 = 2500 ft^2