Example 1
Write y = x2 + 4x + 1 using function notation and evaluate the function at x = 3.
Solution
Given, y = x2 + 4x + 1
By applying function notation, we get
f(x) = x2 + 4x + 1
Evaluation:
Substitute x with 3
f (3) = 32 + 4 × 3 + 1 = 9 + 12 + 1 = 22
Example 2
Evaluate the function f(x) = 3(2x+1) when x = 4.
Solution
Plug x = 4 in the function f(x).
f (4) = 3[2(4) + 1]
f (4) = 3[8 + 1]
f (4) = 3 x 9
f (4) = 27
Example 3
Write the function y = 2x2 + 4x – 3 in function notation and find f (2a + 3).
Solution
y = 2x2 + 4x – 3 ⟹ f (x) = 2x2 + 4x – 3
Substitute x with (2a + 3).
f (2a + 3) = 2(2a + 3)2 + 4(2a + 3) – 3
= 2(4a2 + 12a + 9) + 8a + 12 – 3
= 8a2 + 24a + 18 + 8a + 12 – 3
= 8a2 + 32a + 27
A
C
D
You can find the answers by dividing
Answer:
60
Step-by-step explanation:
420 divided by 7
<span>a) Intervals of increase is where the derivative is positive
b) </span> <span>Intervals of decrease is where the derivative is negative. </span>
c) <span>Inflection points of the function are where the graph changes concavity that is the point where the second derivative is zero </span>
<span>d)
Concave up- Second derivative positive </span>
<span>Concave down- second derivative negative </span>
f(x) = 4x^4 − 32x^3 + 89x^2 − 95x + 31
<span>f '(x) = 16x^3 - 96x^2 + 178x - 95 </span>
<span>f "(x) = 48x^2 - 192x + 178 </span>
<span>By rational root theorem the f '(x) has one rational root and factors to: </span>
<span>f '(x) = (2x - 5)*(8x^2 - 28x + 19) </span>
<span>Using the quadratic formula to find it's two irrational real roots. </span>
<span>The f "(x) = 48x^2 - 192x + 178 only has irrational real roots, use quadratic formula which will be the inflection points as well.</span>
Volume = L * W * D 6,510
= 40 * W * 10.5
W = 6,510/(40 * 10.5)
= 15.5 ft
hope this helps