1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yakvenalex [24]
3 years ago
9

Describe how planets developed. DESCRIBE, DONT STATE.

Physics
2 answers:
Luden [163]3 years ago
8 0
The theory is that a <span>cloud collapses to form a star and disk. </span>Planets<span> form from this disk. According to our current understanding, a star and its </span>planets<span> form out of a collapsing cloud of dust and gas within a larger cloud called a nebula. But the truth is that God shaped them and created them with his hands</span>
marusya05 [52]3 years ago
5 0

According to our current understanding, a star and its planets form out of a collapsing cloud of dust and gas within a larger cloud called a nebula. As gravity pulls material in the collapsing cloud closer together, the center of the cloud gets more and more compressed and, in turn, gets hotter. This dense, hot core becomes the kernel of a new star.

Meanwhile, inherent motions within the collapsing cloud cause it to churn. As the cloud gets exceedingly compressed, much of the cloud begins rotating in the same direction. The rotating cloud eventually flattens into a disk that gets thinner as it spins, kind of like a spinning clump of dough flattening into the shape of a pizza. These "circumstellar" or "protoplanetary" disks, as astronomers call them, are the birthplaces of planets.

Small clumps of material within a disk stick together to form larger clumps. Eventually these clumps grow to become planets.

As a disk spins, the material within it travels around the star in the same direction. Eventually, the material in the disk will begin to stick together, somewhat like household dust sticking together to form dust bunnies. As these small clumps orbit within the disk, they sweep up surrounding material, growing bigger and bigger. The modest gravity of boulder-sized and larger chunks starts to pull in dust and other clumps. The bigger these conglomerates become, the more material they attract, and the bigger they get. Soon, the beginnings of planets — "planetesimals," as they are called — are taking shape.

In the inner part of the disk, most of the material at this point is rocky, as much of the original gas has likely been gobbled up and cleared out by the developing star. This leads to the formation of smaller, rocky planetesimals close to the star. In the outer part of the disk, though, more gas remains, as well as ices that haven't yet been vaporized by the growing star. This additional material allows planetesimals farther from the star to gather more material and evolve into giants of ice and gas.

As each planetesimal grows bigger, it starts clearing out the material in its path, snatching up nearby, slow-moving rubble and gas while gravitationally tossing other material out of its way. Eventually, the debris in its path thins out and the planetesimal has a relatively clear lane of traffic around its star.

Hundreds of these planetesimals are forming at the same time, and inevitably they meet up. If their paths cross at just the right time and they're moving fast enough relative to each other, SMASH! — they collide, sending debris everywhere. But if they slowly meander toward one other, gravity can gently draw them together. They form a union, merging into a larger object. If the participants are farther apart, they might not physically interact but their gravitational encounter can pull each body off course. These wayward objects start to cross other lanes of traffic, setting the stage for additional collisions and other meetings of the rocky kind.

After millions of years, countless encounters between these planetesimals have cleared out much of the disk's debris and have built up much larger — and many fewer — objects that now dominate their regions. A planetary system is reaching maturity.





You might be interested in
¿Por qué si cargas a uno de tus compañeros por cierto tiempo no estás realizando un trabajo mecánico?
VladimirAG [237]

Answer:

I will answer this in English, we can translate it to:

Why if you charge a mate by an amount of time you are not doing work?

This happens because work is defined as the displacement done by a force:

W = d*F

where W is work, d is the distance, and F is the force.

This means that the amount of time that you are charging your mate does not affect the mechanical work, the only time that you are doing work is when you are lifting him.

4 0
4 years ago
Isostatic rebound
svp [43]
I think it is B the rise of the land
4 0
3 years ago
Atoms that have the same number of outer electrons
Varvara68 [4.7K]
B they belong to the same family of elements
8 0
3 years ago
How much work does it take to lift an object weighing 200N to a distance of 20 meters
Bogdan [553]

Answer:

4000 J

Explanation:

W = F = 2000N , s = 20 m

Workdone = F × s = 200 × 20 = 4000J

7 0
3 years ago
Read 2 more answers
Which one isnt a part of he respiratory system?
Vsevolod [243]

Answer:

Colon isn't a part of respiratory system

8 0
3 years ago
Other questions:
  • A system of mass 13 kg undergoes a process during which there is no work, the elevation decreases by 50 m, and the velocity incr
    12·1 answer
  • A skydiver jumps out of a helicopter and falls freely for 14.4 s before opening the parachute. What is the skydivers speed (in m
    8·1 answer
  • if cyanobacteria had failed to appear on Earth,how would the evolution of Earth's atmosphere most likely be different
    8·1 answer
  • From the top of a cliff overlooking a lake, a person throws two stones. The two stones have identical initial speeds of v0 = 13.
    11·1 answer
  • Calculate the acceleration of a train of mass 30 000 kg when driven by a force of 15000 N.
    10·1 answer
  • The table below shows the gravitational acceleration on Earth and Mars. GRAVITATIONAL ACCELERATION ON EARTH AND MARS Planet Grav
    9·1 answer
  • How to solve part (b)?​
    5·1 answer
  • A ball is thrown through the air.What condition(s) would enable the ball to continue in its state of motion?
    15·2 answers
  • NEED HELP PLEASE<br> ASAP<br> SOMEONE!!!!!!!!<br> TRUE OR FALSE 3 QUESTIONS <br> OWA OWA :3
    12·2 answers
  • A charge of 4.0 microC is placed at each corner of a square 0.10 m on a side.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!