Answer:
7.25*10^4 let me know if it is wrong
Step-by-step explanation:
MRK ME BRAINLIEST PLZZZZZZZZZz
Answer:
Area is 154 square meters
Step-by-step explanation:
Well lets think about this
If I take a rectangle and cut it into half diagonally I would get 2 triangles right?
So if I have 2 triangles of the same height and base I can make a rectangle
to find the area of a rectangle I do length times width
So lets take our scalene triangle and multiply our base with its width and then divide by 2
22*14 = 308
308/2 is 154
Answer:
60
Step-by-step explanation:
Find the median of each set:-
Median is middle number of a data set. If a data set has an odd number of numbers then the median is the middle number when ordered form least to greatest but if its an even number you have to find the mean for the middle 2 numbers when ordered for least to greatest.
A.
1.2, 2.4, 3.2, 3.2, 3.6, 4.0, 4.1, 4.7
Even numbers = 8
3.2 + 3.6 = 6.8
6.8 ÷ 2 =
Median = 3.4
So this shows that A isn't the answer because the median of A is 3.4, not 3.2.
B.
1.6, 2.8, 2.9, 3.1, 3.3, 3.6, 4.2, 4.5
Even numbers = 8
3.1 + 3.3 = 6.4
6.4 ÷ 2 = 3.2
Median = 3.2
<span>So this shows that B is the answer because the median of B is 3.2.
C.
1.8, 2.0, 2.0, 2.2, 3.2, 4.7, 4.8, 4.9
</span>
Even numbers = 8
2.2 + 3.2 = 5.4
5.4 ÷ 2 = 2.7
Median = 2.7
<span>So this shows that C isn't the answer because the median of C is 2.7, not 3.2.
</span>
D.
1.4, 1.7, 2.9, 3.0, 3.1, 3.2, 3.2, 3.2, 4
Odd numbers = 9
Median = 3.1
<span>So this shows that D isn't the answer because the median of D is 3.1, not 3.2.
</span>
The stem and leaf plot which median is 3.2 is B.
Given that the point B is (1,1) is rotate 90° counterclockwise around the origin.
We need to determine the coordinates of the resulting point B'.
<u>Coordinates of the point B':</u>
The general rule to rotate the point 90° counterclockwise around the origin is given by

The new coordinate can be determined by interchanging the coordinates of x and y and changing the sign of y.
Now, we shall determine the coordinates of the point B' by substituting (1,1) in the general rule.
Thus, we have;
Coordinates of B' = 
Thus, the coordinates of the resulting point B' is (-1,1)