<u><em>Tell Me If Somethings wrong with my answer! </em></u>
Simliar-AA is your answer
Answer:
The factored expression is 2(x² + 5)(x + 3).
Step-by-step explanation:
Hey there!
We can use a factoring technique referred to as "grouping" to solve this problem.
Grouping is used for polynomials with four terms as a quick and easy factoring method to remove the GCF and get down to the initial terms that create the expression/function.
Grouping works in the following matter:
- Given equation: ax³ + bx² + cx + d
- Group a & b, c & d: (ax³ + bx²) + (cx + d)
- Pull GCFs and factors
Let's apply these steps to the given equation.
- Given equation: 2x³ + 6x² + 10x + 30
- Group a & b, c & d: (2x³ + 6x²) + (10x + 30)
- Pull GCFs and factors: 2x²(x + 3) + 10(x + 3)
As you'll see, we have a common term with both sides of the expression. This term, (x + 3), is a valuable asset to the factoring process. This is one of the factors for our expression.
Now, we use our GCFs to create another factor.
- List GCFs: 2x², 10
- Create a term: (2x² + 10)
Finally, we'll need to simplify this one by taking another GCF, 2.
- Pull GCF: 2(x² + 5)
Now that we have this term, we need to understand that this <em>could</em> also be factored further using imaginary numbers, but it is also acceptable to leave it in this form.
Therefore, we have our final factors: 2(x² + 5) and (x + 3).
However, when we factor, we place all of our terms together. This leaves us with the final answer: 2(x² + 5)(x + 3).
- Quadratic Formula:
, with a = x^2 coefficient, b = x coefficient, and c = constant.
Firstly, starting with the y-intercept. To find the y-intercept, set the x variable to zero and solve as such:

<u>Your y-intercept is (0,-51).</u>
Next, using our equation plug the appropriate values into the quadratic formula:

Next, solve the multiplications and exponent:

Next, solve the addition:

Now, simplify the radical using the product rule of radicals as such:
- Product Rule of Radicals: √ab = √a × √b
√1224 = √12 × √102 = √2 × √6 × √6 × √17 = 6 × √2 × √17 = 6√34

Next, divide:

<u>The exact values of your x-intercepts are (-4 + √34, 0) and (-4 - √34, 0).</u>
Now to find the approximate values, solve this twice: once with the + symbol and once with the - symbol:

<u>The approximate values of your x-intercepts (rounded to the hundredths) are (1.83,0) and (-9.83,0).</u>