If <em>x</em> + 1 is a factor of <em>p(x)</em> = <em>x</em>³ + <em>k</em> <em>x</em>² + <em>x</em> + 6, then by the remainder theorem, we have
<em>p</em> (-1) = (-1)³ + <em>k</em> (-1)² + (-1) + 6 = 0 → <em>k</em> = -4
So we have
<em>p(x)</em> = <em>x</em>³ - 4<em>x</em>² + <em>x</em> + 6
Dividing <em>p(x)</em> by <em>x</em> + 1 (using whatever method you prefer) gives
<em>p(x)</em> / (<em>x</em> + 1) = <em>x</em>² - 5<em>x</em> + 6
Synthetic division, for instance, might go like this:
-1 | 1 -4 1 6
... | -1 5 -6
----------------------------
... | 1 -5 6 0
Next, we have
<em>x</em>² - 5<em>x</em> + 6 = (<em>x</em> - 3) (<em>x</em> - 2)
so that, in addition to <em>x</em> = -1, the other two zeros of <em>p(x)</em> are <em>x</em> = 3 and <em>x</em> = 2
Answer:
215
Step-by-step explanation:
60=50
258=?
258 divided by 60 = 4.3
50 x 4.3 = 215
Answer:
b
Step-by-step explanation:
I believe I already answered this question... did I get it wrong?
Answer:
a) Probability of picking Two MAGA buttons without replacement = 0.15
b) Probability of picking a MAGA and GND button in that order = 0.0833
Probability of picking a MAGA and GND button in with the order unimportant = 0.167
Step-by-step explanation:
10 MAGA [MAKE AMERICA GREAT AGAIN] buttons, 5 GND [GREEN NEW DEAL] buttons and 10 NAW [NEVER A WALL] buttons.
Total number of buttons = 10 + 5 + 10 = 25
Let probability of picking a MAGA button be P(M) = 10/25 = 0.4
Probability of picking a GND button be P(G) = 5/25 = 0.2
Probability of picking a NAW button be P(N) = 10/25 = 0.4
a) Probability of picking Two MAGA buttons without replacement = (10/25) × (9/24) = 3/20 = 0.15
b) Probability of picking a MAGA and GND button in that order = (10/25) × (5/24) = 1/12 = 0.0833
Probability of picking a MAGA and GND button in with the order unimportant = [(10/25) × (5/24)] + [(5/25) × (10/24)] = 1/6 = 0.167