1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marina86 [1]
3 years ago
11

Point E is the midpoint of Line segment A B and point F is the midpoint of Line segment C D . 3 intersecting lines are shown. A

line has points C, E, F, D. Another line has points A, E, and B and intersects the other line at point E. Another line goes from point A to point F. Which statements about the figure must be true? Select three options. Line segment A B is bisected by Line segment C D . Line segment C D is bisected by Line segment A B . AE = One-halfAB EF = One-halfED CE + EF = FD
Mathematics
2 answers:
nikklg [1K]3 years ago
4 0

Answer:

A, C, and E are correct.

Step-by-step explanation:

B is incorrect because a line that passes through point F would be the bisect, not line segment AB

D is incorrect because it just is.

loris [4]3 years ago
3 0

Answer

A

C

E

Step-by-step explanation:

edg 2020

You might be interested in
The sum of two numbers is 64 and the difference is 6. What are the numbers?
Ne4ueva [31]

Answer:

29 and 35

Step-by-step explanation:

x+y=64

x-y=6

Solve by substitution.

x=6+y

6+y+y=64

6+2y=64

y=29

Then plug in 29 for y.

x+29=64 ......35

7 0
3 years ago
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
Is -root 16 a rational number
aleksklad [387]

Answer:

yes ! it's a rational number.

Step-by-step explanation:

<em>The square root of 16 is 4, which is an integer, and therefore rational.</em>

<em>H</em><em>o</em><em>p</em><em>e</em><em> </em><em>it'll</em><em> </em><em>help</em><em>!</em>

<em>s</em><em>t</em><em>a</em><em>y</em><em> </em><em>safe</em><em>:</em><em>)</em>

7 0
3 years ago
Read 2 more answers
A scientist needs 60 liters of a 40​% acid solution. He currently has a 20 % solution and a 50 % solution. How many liters of ea
Stella [2.4K]

percent ---------------- quantity

Acid type I 60.00% ---------------- x liters

acid type II 30.00% ------ 60 - x liters

Mixture 40.00% ---------------- 60

Total 60 liters

60.00% x + 30.00% ( 60 - x ) = 40.00% * 60

60 x + 30 ( 60 - x ) = 2400


60 x + 1800 - 30 x = 2400

60 x - 30 x = 2400 - -1800

30 x = 600

/ 30

x = 20 liters 60.00% Acid type I

40 liters 30.00% acid type II

brainliest plzz

6 0
3 years ago
Darren wins a coupon for 4$ off the lunch special for each of 5 days. He pays $75 for his 5 lunch specials. Write and solve an e
Hunter-Best [27]
P - (4x5) = 75
p = $95
hope this helped :)
4 0
3 years ago
Other questions:
  • Show that 551 is a rational by writing it in the form a/b, where a and b are integers
    7·1 answer
  • URGENT! URGENT! URGENT!!!! WILL GIVE BRAINLIEST IF CORRECT!!!
    13·2 answers
  • -9x+2&gt;18 AND 13x+15≤-4
    6·1 answer
  • If triangle ABC = triangle PQR and triangle RPQ = triangle XYZ, which of the following angles is congruent angle CAB?
    13·2 answers
  • Solve for x in the triangle.Round your answer to the nearest tenth.
    7·2 answers
  • PLEASE HELP!!!!!!!!!!!!
    5·1 answer
  • I need help quickly please can someone help
    8·1 answer
  • Hiii please help i’ll give brainliest if you give a correct please please thank youuuuu
    12·1 answer
  • SOS ANSWERRRRR PLZZZZZ
    11·1 answer
  • How many times is (x-1) a factor of g(x)= x^4-6x^2+8x-3
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!