Answer:
See explanation below
Explanation:
You forgot to put the picture to do so. In this case, I manage to find one, and I hope is the one you are looking for. If not, then post it again and I'll gladly help you out again.
According to the picture with the answer, we have a cyclohexane with 4 methyl groups there. Two of them are facing towards the molecule with a darker bond. This means that the alkyl bromide, should have a bromine in one of the bonds, and in order to produce an E2 reaction, this bromine should be facing in the opposite direction of the methyl groups which are facing towards. This is because an E2 reaction occurs with the less steric hindrance in the molecule. If the bromine is in the same direction as the methyl group, it will cause a lot more of work to do a reaction, and therefore, an E2 reaction. I will promote instead a E1 or a sustitution product.
Therefore the alkyl bromide should be like the one in the picture 2.
John Dalton made some hypothesis about the structure of atom. He proposed that matter is composed of great number of indivisible particles called atoms they can neither be destroyed nor be created.
<h3>What is atomic theory?</h3>
There are different theories regarding the structure and electronic properties of an atom. Many scientists contributed to the modern theory of atomic structure in which John Dalton was first to mention the word atom.
According to Dalton' theory, matter is composed of indivisible particles called atoms. Atoms can neither be created nor be destroyed. All the atoms of the same element are identical in all aspects.
Atoms of different elements are different and the compounds are formed by the combination of atoms. Dalton's theory provided a sound basis for the laws of chemical combination and also several properties of gases and liquids known at that time.
However, he could not explain the reason for chemical combination of atoms and did not give any idea about the existence of isotopes and isobars.
Hence, the main aspects of Dalton's theory was the indivisibility of atoms and the chances of chemical combination.
To learn more about Dalton's theory, find the link below:
brainly.com/question/11855975
#SPJ1
Answer:
![K_2=\frac{[NOBr]^4_{eq}}{[NO]^4_{eq}[Br]^2_{eq}}](https://tex.z-dn.net/?f=K_2%3D%5Cfrac%7B%5BNOBr%5D%5E4_%7Beq%7D%7D%7B%5BNO%5D%5E4_%7Beq%7D%5BBr%5D%5E2_%7Beq%7D%7D)
Explanation:
Hello,
In this case, for the equilibrium condition, the equilibrium constant is defined via the law of mass action, which states that the division between the concentrations of the products over the concentration of the reactants at equilibrium equals the equilibrium constant, for the given reaction:

The suitable equilibrium constant turns out:
![K_2=\frac{[NOBr]^4_{eq}}{[NO]^4_{eq}[Br]^2_{eq}}](https://tex.z-dn.net/?f=K_2%3D%5Cfrac%7B%5BNOBr%5D%5E4_%7Beq%7D%7D%7B%5BNO%5D%5E4_%7Beq%7D%5BBr%5D%5E2_%7Beq%7D%7D)
Or in terms of the initial equilibrium constant:

Since the second reaction is a doubled version of the first one.
Best regards.
Answer:
The correct answer is because they have same number of protons but different number of neutrons.
Explanation:
Isotopes are atoms of the same element but differ only in the number of neutrons in the nucleus, i.e. they have same atomic number but different mass number.
Mass number is affected as they have different number of neutrons, thus effecting their physical properties.
The number of electrons and protons are same, i.e. their atomic number is same and thus their chemical properties are same as chemical properties are determined by the atom’s electronic configuration and that relates to number of protons.
The molecular weight of K2SO4 is 174.26 g/mole. The mass of K2SO4 required to make this solution is calculated in the following way.
550mL * (0.76mole/1000mL) * (174.26g/mole) = 72.84gram
<span>I hope this helps.</span>