Answer:
grams H₂O produced = 8.7 grams
Explanation:
Given 2C₂H₆(g) + 7O₂(g) => 4CO₂(g) + 6H₂O(l)
7g 18g ?g
Plan => Convert gms to moles => determine Limiting reactant => solve for moles water => convert moles water to grams water
Moles Reactants
moles C₂H₆ = 7g/30g/mol = 0.233mol
moles O₂ = 18g/32g/mol = 0.563mol
Limiting Reactant => (Test for Limiting Reactant) Divide mole value by respective coefficient of balanced equation; the smaller number is the limiting reactant.
moles C₂H₆/2 = 0.233/2 = 0.12
moles O₂/7 = 0.08
<u><em>Limiting Reactant is O₂</em></u>
Moles and Grams of H₂O:
Use Limiting Reactant moles (not division value) to calculate moles of H₂O.
moles H₂O = 6/7(moles O₂) = 6/7(0.562) moles H₂O = 0.482 mole H₂O yield
grams H₂O = (0.482mol)(18g·mol⁻¹) = 8.7 grams H₂O
Answer:
It helps the body remove heat through sweating.
Explanation:
When the weather is hot, the body tries to keep cool by sweating. The high specific heat capacity means that the body doesn't have to lose much water to stay cool.
The high specific heat capacity of water doesn’t heat the body, but it slows down the rate of heat loss when the weather is cool.
B is wrong. The body uses glucose, not water, as an energy source.
C is wrong. The high specific heat capacity of water is not connected with the body's ability to store it.
D is wrong. The high specific heat capacity of water doesn't heat the body, but it slows the rate at which it cools.
The branch of chemistry that the chemist might use will be the branch of <em>organic chemistry</em>. This is because gasoline is an organic compound. We can say that a compound is organic if it contains a carbon atom. Gasoline is composed of long chains of alkanes (hydrocarbons with single bonds) ranging from 4 carbon atoms to 12 carbon atoms.