Answer:
w < 8 meters ( w must be greater than 0 because length cannot be 0)
Step-by-step explanation:
One side with building is 23 meters, the other opposite side also will be 23 meters (with rope).
Let width (remaining 2 sides) be "w", he has AT MOST 39 meters of rope, so we can write:
Rope Needed = 23 + 2w < 39
Simplifying:

The range of possible values of w is
meters (of course w has to be greater than 0)
Answer:
All natural numbers are whole numbers because in the numbers diagram natural numbers are within whole numbers
Step-by-step explanation:
By the Pythagorean theorem,

Let b= length and a=width
Area= a*b and the problem said b=2a+3 (the length is 3ft more than double the width)
Replace b into Area formula:
Area= a*(2a+3) and we know that Area=77ft from the problem, so:
77=2a^2+3a now order and equal to zero:
2a^2+3a=77 now solve this with quadratic formula and you will get so values for a: -7ft and 5.5ft as you know the dimensions could not be negative so the correct answer for "a" side is 5.5ft, for getting the b side you haeve to replace a=5.5 into b=2a+3 and you will get b=2*5.5+3= 14ft.
Finished.
Answer:
The answer is below
Step-by-step explanation:
Let x represent the number of small hat purchased, y represent the number of medium hat purchased and z represent the number of large hat purchased.
Since a total of 47 hats where purchased, hence:
x + y + z = 47 (1)
Also, he spent a total of $302, hence:
5.5x + 6y + 7z = 302 (2)
He purchases three times as many medium hats as small hats, hence:
y = 3x
-x + 3y = 0 (3)
Represent equations 1, 2 and 3 in matrix form gives:
![\left[\begin{array}{ccc}1&1&1\\5.5&6&7\\-3&1&0\end{array}\right] \left[\begin{array}{c}x\\y\\z\end{array}\right] = \left[\begin{array}{c}47\\302\\0\end{array}\right] \\\\\\\\ \left[\begin{array}{c}x\\y\\z\end{array}\right] =\left[\begin{array}{ccc}1&1&1\\5.5&6&7\\-3&1&0\end{array}\right] ^{-1} \left[\begin{array}{c}47\\302\\0\end{array}\right] \\\\\\ \left[\begin{array}{c}x\\y\\z\end{array}\right] = \left[\begin{array}{c}6\\18\\23\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%261%5C%5C5.5%266%267%5C%5C-3%261%260%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D47%5C%5C302%5C%5C0%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5C%5C%5C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%261%5C%5C5.5%266%267%5C%5C-3%261%260%5Cend%7Barray%7D%5Cright%5D%20%5E%7B-1%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D47%5C%5C302%5C%5C0%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D6%5C%5C18%5C%5C23%5Cend%7Barray%7D%5Cright%5D)
Therefore he purchases 6 small hats, 18 medium hats and 23 large hats