3(x-1)-8=4(1+x)+5
One solution was found :
x = -20
Rearrange:
Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :
3*(x-1)-8-(4*(1+x)+5)=0
Step by step solution :
Step 1 :
Equation at the end of step 1 :
((3•(x-1))-8)-(4•(x+1)+5) = 0
Step 2 :
Equation at the end of step 2 :
(3 • (x - 1) - 8) - (4x + 9) = 0
Step 3 :
Step 4 :
Pulling out like terms :
4.1 Pull out like factors :
-x - 20 = -1 • (x + 20)
Equation at the end of step 4 :
-x - 20 = 0
Step 5 :
Solving a Single Variable Equation :
5.1 Solve : -x-20 = 0
Add 20 to both sides of the equation :
-x = 20
Multiply both sides of the equation by (-1) : x = -20
One solution was found :
x = -20
hope this is wht u wanted
Answer:
Your answer is 2.4
Step-by-step explanation:
Answer:
why????why you won't give link
Question :-
- Find the Area of Rectangle , where the Lenght is 15 cm and its Breadth is 7 cm .
Answer :-
- Area of Rectangle is 105 cm² .

Diagram :-


Solution :-
» As per the provided information in the given question, we have been given that the Length of Rectangle is 15 cm . It's Breadth is given as 7 cm . And, we have been asked to calculate the Area of Rectangle.
For calculating the Area of Rectangle , we will use the Formula :-
Therefore , by Substituting the given values in the above Formula :-



Hence :-
- Area of Rectangle = 105 cm² .

Additional Information :-
![\begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\ \underline{ { \textbf {\textsf \red{ \dag \: \: More \: Formulas \: \: \dag}}}} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _{Square} = Side \times Side} \\ \\ \\ \footnotesize\bigstar \: \bf{Area \: _{Rectangle} = Lenght \times Breadth} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _{Triangle} = \frac{1}{2} \times Base \times Height } \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _{Parallelogram} = Base \times Height} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _{Trapezium} = \frac{1}{2} \times [ \: A + B \: ] \times Height } \\ \\ \\ \footnotesize \bigstar \: \bf {Area \: _{Rhombus} = \frac{1}{2} \times Diagonal \: 1 \times Diagonal \: 2}\end{array}}\end{gathered}\end{gathered}](https://tex.z-dn.net/?f=%20%5Cbegin%7Bgathered%7D%5Cbegin%7Bgathered%7D%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%20%5C%5C%20%5Cunderline%7B%20%7B%20%5Ctextbf%20%7B%5Ctextsf%20%5Cred%7B%20%5Cdag%20%5C%3A%20%20%5C%3A%20More%20%5C%3A%20Formulas%20%5C%3A%20%20%5C%3A%20%20%5Cdag%7D%7D%7D%7D%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20%5Cfootnotesize%20%5Cbigstar%20%20%5C%3A%20%20%5Cbf%7BArea%20%5C%3A%20_%7BSquare%7D%20%3D%20Side%20%5Ctimes%20Side%7D%20%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20%20%5Cfootnotesize%5Cbigstar%20%20%5C%3A%20%20%5Cbf%7BArea%20%5C%3A%20_%7BRectangle%7D%20%3D%20Lenght%20%5Ctimes%20Breadth%7D%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20%5Cfootnotesize%20%5Cbigstar%20%5C%3A%20%20%5Cbf%7BArea%20%5C%3A%20_%7BTriangle%7D%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20Base%20%5Ctimes%20Height%20%7D%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20%5Cfootnotesize%20%5Cbigstar%20%5C%3A%20%20%5Cbf%7BArea%20%5C%3A%20_%7BParallelogram%7D%20%3D%20Base%20%5Ctimes%20Height%7D%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20%5Cfootnotesize%20%5Cbigstar%20%5C%3A%20%20%5Cbf%7BArea%20%5C%3A%20_%7BTrapezium%7D%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20%5B%20%5C%3A%20A%20%2B%20B%20%5C%3A%20%5D%20%5Ctimes%20Height%20%7D%20%5C%5C%20%5C%5C%20%5C%5C%20%5Cfootnotesize%20%5Cbigstar%20%5C%3A%20%5Cbf%20%7BArea%20%5C%3A%20_%7BRhombus%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20Diagonal%20%5C%3A%201%20%5Ctimes%20Diagonal%20%5C%3A%202%7D%5Cend%7Barray%7D%7D%5Cend%7Bgathered%7D%5Cend%7Bgathered%7D%20)
The distance of point a from translated b is 9.2 units and the distance of point b from translated b is 3.6 units
<h3>What is a line?</h3>
A line is the distance between two points.
Analysis:
point a( -3,1) point b(2, -6) point translated b(-1, -8)
Distance ab = 
Distance ab =
= 9.21 units
Distance btb =
= 3.6 units
In conclusion, the distance of b from a is 9.2 units and b from b is 3.6 units.
Learn more about distance between two points: brainly.com/question/7243416
#SPJ1