Answer:
A) One set of data has more variation than the other.
Step-by-step explanation:
<em> did the test</em>
The breen family drove 746 miles on their vacation trip
Answer: 0.0793
Step-by-step explanation:
Let the IQ of the educated adults be X then;
Assume X follows a normal distribution with mean 118 and standard deviation of 20.
This is a sampling question with sample size, n =200
To find the probability that the sample mean IQ is greater than 120:
P(X > 120) = 1 - P(X < 120)
Standardize the mean IQ using the sampling formula : Z = (X - μ) / σ/sqrt n
Where; X = sample mean IQ; μ =population mean IQ; σ = population standard deviation and n = sample size
Therefore, P(X>120) = 1 - P(Z < (120 - 118)/20/sqrt 200)
= 1 - P(Z< 1.41)
The P(Z<1.41) can then be obtained from the Z tables and the value is 0.9207
Thus; P(X< 120) = 1 - 0.9207
= 0.0793
A = bh
b = 7 + 4 = 11
h = 8
11(8) = 88
The correct answer is B. 88 m^2
Answer: " 15 % " .
_______________________________
→ " 12 is <u> 15% </u> of 80 " .
_______________________________
Step-by-step explanation:
_______________________________
12 = (n/100) * 80 ;
12 = (80n) /100 ; Solve for "n:
Note: 80/100 = (80/10) / (100/10) = (8/10) = 0.8 ;
12 = (0.8)n ;
↔ (0.8n) = 12
Multiply each side of the equation by "10" ; to get rid of the "decimal" ;
10 * (0.8n) = 10 * 12 ;
to get:
_______________________________
8n = 120 ;
Divide each side of the equation by "8" ;
to isolate "n" on ONE SIDE of the equation; & to solve for "n" ;
8n/8 = 120/ 8 ;
_______________________________
to get:
_______________________________
n = 15 .
_______________________________
Answer: " 15 % " .
_______________________________
→ " 12 is <u> 15% </u> of 80 " .
_______________________________
Hope this helps!
Best wishes!
_______________________________