Answer:
Reaches a maximum height of 235.00 feet in 3.75 seconds.
Step-by-step explanation:
The height of the boulder, h, in feet after t seconds is given by the function is given by :
.....(1)
For maximum height, put 
i.e.

Put t = 3.75 in equation (1). So,

So, the boulder's maximum height is 235 feets and it takes 3.75 s to reach to its maximum height.
Answer:
64 feet
Step-by-step explanation:
To find the height of the kite we use sin trigonometric ratio.
Let the height of the kite from the ground be x feet.

Answer:
There is a 34.13% probability that the actual return will be between the mean and one standard deviation above the mean.
Step-by-step explanation:
This is problem is solving using the Z-score table.
The Z-score of a measure measures how many standard deviations above/below the mean is a measure. Each Z-score has a pvalue, that represents the percentile of a measure.
What is the probability that the actual return will be between the mean and one standard deviation above the mean?
One measure above the mean is 
The mean is 
This means that this probability is the pvalue of
subtracted by the pvalue of
.
has a pvalue of 0.8413.
has a pvalue of 0.50.
This means that there is a 0.8413-0.50 = 0.3413 = 34.13% probability that the actual return will be between the mean and one standard deviation above the mean.
Circle: x^2+y^2=121=11^2 => circle with radius 11 and centred on origin.
g(x)=-2x+12 (from given table, find slope and y-intercept)
We can see from the graphics that g(x) will be almost tangent to the circle at (0,11), and that both intersection points will be at x>=11.
To show that this is the case,
substitute g(x) into the circle
x^2+(-2x+12)^2=121
x^2+4x^2-2*2*12x+144-121=0
5x^2-48x+23=0
Solve using the quadratic formula,
x=(48 ± √ (48^2-4*5*23) )/10
=0.5058 or 9.0942
So both solutions are real and both have positive x-values.