1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Varvara68 [4.7K]
3 years ago
14

interpret r(t) as the position of a moving object at time t. Find the curvature of the path and determine thetangential and norm

al components of acceleration .r(t) = cos 2t i + sin 2t j + k.
Mathematics
1 answer:
Igoryamba3 years ago
3 0

Answer:

The curvature is \kappa=1

The tangential component of acceleration is a_{\boldsymbol{T}}=0

The normal component of acceleration is a_{\boldsymbol{N}}=1 (2)^2=4

Step-by-step explanation:

To find the curvature of the path we are going to use this formula:

\kappa=\frac{||d\boldsymbol{T}/dt||}{ds/dt}

where

\boldsymbol{T}} is the unit tangent vector.

\frac{ds}{dt}=|| \boldsymbol{r}'(t)}|| is the speed of the object

We need to find \boldsymbol{r}'(t), we know that \boldsymbol{r}(t)=cos \:2t \:\boldsymbol{i}+sin \:2t \:\boldsymbol{j}+ \:\boldsymbol{k} so

\boldsymbol{r}'(t)=\frac{d}{dt}\left(cos\left(2t\right)\right)\:\boldsymbol{i}+\frac{d}{dt}\left(sin\left(2t\right)\right)\:\boldsymbol{j}+\frac{d}{dt}\left(1)\right\:\boldsymbol{k}\\\boldsymbol{r}'(t)=-2\sin \left(2t\right)\boldsymbol{i}+2\cos \left(2t\right)\boldsymbol{j}

Next , we find the magnitude of derivative of the position vector

|| \boldsymbol{r}'(t)}||=\sqrt{(-2\sin \left(2t\right))^2+(2\cos \left(2t\right))^2} \\|| \boldsymbol{r}'(t)}||=\sqrt{2^2\sin ^2\left(2t\right)+2^2\cos ^2\left(2t\right)}\\|| \boldsymbol{r}'(t)}||=\sqrt{4\left(\sin ^2\left(2t\right)+\cos ^2\left(2t\right)\right)}\\|| \boldsymbol{r}'(t)}||=\sqrt{4}\sqrt{\sin ^2\left(2t\right)+\cos ^2\left(2t\right)}\\\\\mathrm{Use\:the\:following\:identity}:\quad \cos ^2\left(x\right)+\sin ^2\left(x\right)=1\\\\|| \boldsymbol{r}'(t)}||=2\sqrt{1}=2

The unit tangent vector is defined by

\boldsymbol{T}}=\frac{\boldsymbol{r}'(t)}{||\boldsymbol{r}'(t)||}

\boldsymbol{T}}=\frac{-2\sin \left(2t\right)\boldsymbol{i}+2\cos \left(2t\right)\boldsymbol{j}}{2} =\sin \left(2t\right)+\cos \left(2t\right)

We need to find the derivative of unit tangent vector

\boldsymbol{T}'=\frac{d}{dt}(\sin \left(2t\right)\boldsymbol{i}+\cos \left(2t\right)\boldsymbol{j}) \\\boldsymbol{T}'=-2\cdot(\sin \left(2t\right)\boldsymbol{i}+\cos \left(2t\right)\boldsymbol{j})

And the magnitude of the derivative of unit tangent vector is

||\boldsymbol{T}'||=2\sqrt{\cos ^2\left(x\right)+\sin ^2\left(x\right)} =2

The curvature is

\kappa=\frac{||d\boldsymbol{T}/dt||}{ds/dt}=\frac{2}{2} =1

The tangential component of acceleration is given by the formula

a_{\boldsymbol{T}}=\frac{d^2s}{dt^2}

We know that \frac{ds}{dt}=|| \boldsymbol{r}'(t)}|| and ||\boldsymbol{r}'(t)}||=2

\frac{d}{dt}\left(2\right)\: = 0 so

a_{\boldsymbol{T}}=0

The normal component of acceleration is given by the formula

a_{\boldsymbol{N}}=\kappa (\frac{ds}{dt})^2

We know that \kappa=1 and \frac{ds}{dt}=2 so

a_{\boldsymbol{N}}=1 (2)^2=4

You might be interested in
What is the GFC of 28 and 72
Ivan

the greatest common factor of these numbers is 2

3 0
3 years ago
Solving these quadratics for x using complete the square 3x^2-4x-1=0
ZanzabumX [31]

Answer:

in picture

Step-by-step explanation:

5 0
3 years ago
If M=-7 and B=9 what are the answers to the following <br><br> 67xM=<br><br> -23xB
alekssr [168]

Answer: -207

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
B) ¿Cuál es la relación entre el diametro y el radio?<br>​
kow [346]

Answer:

La circunferencia es una línea curva, y su longitud depende del radio o del diámetro. La relación matemática entre el radio (o diámetro) y la circunferencia se da por la siguiente fórmula: C = 2πr = πD. Donde C es la circunferencia y π=3.14.

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
A phone company offers two monthly plans. Plan A costs $10 plus an additional $0.15 for each minute of calls. Plan B costs $30 p
Mkey [24]

First, you need to write to expressions to model each situation:

Plan A: 10+0.15x

Plan B: 30+0.1x


Next, set the expressions equal to each other and solve for x:

10+0.15x=30+0.1x

<em>*Subtract 0.1x from both sides to isolate the variable*</em>

10+0.05x=30

<em>*Subtract 10 from both sides*</em>

0.05x=20

<em>*Divide both sides by 0.05*</em>

x=400


The plans would have the same cost after 400 minutes of calls.


To find how much money the plans cost at 400 minutes, plug 400 into either expression.  We'll use Plan A:

10+0.15(400)

10+60

70


The plans will cost $70.


Hope this helps!

3 0
3 years ago
Other questions:
  • PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
    5·2 answers
  • What is the slope intercept form for a line whose slope is 3 and passes through (-4,9)
    14·2 answers
  • if you run for 4 hours at 8 miles and walk 8 hours at 2 miles how far will you have gone at the end of 12 hours?
    15·2 answers
  • The greatest common factor of any two odd numbers is always odd true or false
    8·2 answers
  • What is the area of the triangle?
    5·2 answers
  • What is the correct value of x in the equation 2x + 3= 6​
    12·2 answers
  • -2/3 +7=15 <br><br> Could someone help me solve this?
    13·1 answer
  • Find the geometric mean of 2 and 72
    15·2 answers
  • Mrs.bowlin Organise the markers and two sets of staff were nine markers in each is that how many sets of markers did Mrs. Bowlin
    12·1 answer
  • Part a: a circle is the set of all points that are the same distance from one given point. find an example that contradicts this
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!