Answer:
The probability that a family spends less than $410 per month
P( X < 410) = 0.1151
Step-by-step explanation:
<u><em>Step(i):-</em></u>
<em>Given mean of the population = 500 </em>
<em>Given standard deviation of the Population = 75</em>
Let 'X' be the variable in normal distribution

<em>Given X = $410</em>
<em></em>
<em></em>
<u><em>Step(ii):-</em></u>
The probability that a family spends less than $410 per month
P( X < 410) = P( Z < - 1.2 )
= 0.5 - A( -1.2)
= 0.5 - A(1.2)
= 0.5 - 0.3849 ( ∵from normal table)
= 0.1151
<u>Final answer:-</u>
The probability that a family spends less than $410 per month
P( X < 410) = 0.1151
Answer:
20%
Step-by-step explanation:
We can start by finding out how much the price of the television was reduced by.
250 - 200 = 50
Now, we need to know what percent of 250 is 50? Let x represent the percent of 250 that is 50. Using this, we can set up an equation:
<u />
Notice that a percentage can also be written as that number over 100.


Reduce the fraction (250 and 100 have a common factor of 10)

Reduce the fraction again (25 and 10 have a common factor of 5)

Multiply both sides by two

Divide both sides by 5

Therefore the price of the television was reduced by 20%.
The ratio of yellow balloons to blue balloons is 8:12
Then there are 100 balloons. Making the equation, we are able to have:
8X + 12X = 1000
20x = 1000
X = 50.
Yellow balloons = 8x = 8 * 50 = 400 yellow balloons
Blue balloons = 12X = 12 * 50 = 600 blue balloons
So there are 400 yellows balloons.