To find the zeros of a quadratic fiunction given the equation you can use the next quadratic formula after equal the function to 0:
![\begin{gathered} ax^2+bx+c=0 \\ \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20ax%5E2%2Bbx%2Bc%3D0%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5Cend%7Bgathered%7D)
For the given function:

![x=\frac{-(-10)\pm\sqrt[]{(-10)^2-4(2)(-3)}}{2(2)}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-%28-10%29%5Cpm%5Csqrt%5B%5D%7B%28-10%29%5E2-4%282%29%28-3%29%7D%7D%7B2%282%29%7D)
![x=\frac{10\pm\sqrt[]{100+24}}{4}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B10%5Cpm%5Csqrt%5B%5D%7B100%2B24%7D%7D%7B4%7D)
![\begin{gathered} x=\frac{10\pm\sqrt[]{124}}{4} \\ \\ x=\frac{10\pm\sqrt[]{2\cdot2\cdot31}}{4} \\ \\ x=\frac{10\pm\sqrt[]{2^2\cdot31}}{4} \\ \\ x=\frac{10\pm2\sqrt[]{31}}{4} \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%5Cfrac%7B10%5Cpm%5Csqrt%5B%5D%7B124%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B10%5Cpm%5Csqrt%5B%5D%7B2%5Ccdot2%5Ccdot31%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B10%5Cpm%5Csqrt%5B%5D%7B2%5E2%5Ccdot31%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B10%5Cpm2%5Csqrt%5B%5D%7B31%7D%7D%7B4%7D%20%5C%5C%20%20%5Cend%7Bgathered%7D)
![\begin{gathered} x_1=\frac{10}{4}+\frac{2\sqrt[]{31}}{4} \\ \\ x_1=\frac{5}{2}+\frac{\sqrt[]{31}}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x_1%3D%5Cfrac%7B10%7D%7B4%7D%2B%5Cfrac%7B2%5Csqrt%5B%5D%7B31%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x_1%3D%5Cfrac%7B5%7D%7B2%7D%2B%5Cfrac%7B%5Csqrt%5B%5D%7B31%7D%7D%7B2%7D%20%5Cend%7Bgathered%7D)
![\begin{gathered} x_2=\frac{10}{4}-\frac{2\sqrt[]{31}}{4} \\ \\ x_2=\frac{5}{2}-\frac{\sqrt[]{31}}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x_2%3D%5Cfrac%7B10%7D%7B4%7D-%5Cfrac%7B2%5Csqrt%5B%5D%7B31%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x_2%3D%5Cfrac%7B5%7D%7B2%7D-%5Cfrac%7B%5Csqrt%5B%5D%7B31%7D%7D%7B2%7D%20%5Cend%7Bgathered%7D)
Then, the zeros of the given quadratic function are:
![\begin{gathered} x=\frac{5}{2}+\frac{\sqrt[]{31}}{2} \\ \\ x_{}=\frac{5}{2}-\frac{\sqrt[]{31}}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%5Cfrac%7B5%7D%7B2%7D%2B%5Cfrac%7B%5Csqrt%5B%5D%7B31%7D%7D%7B2%7D%20%5C%5C%20%20%5C%5C%20x_%7B%7D%3D%5Cfrac%7B5%7D%7B2%7D-%5Cfrac%7B%5Csqrt%5B%5D%7B31%7D%7D%7B2%7D%20%5Cend%7Bgathered%7D)
Answer: Third option
Step-by-step explanation:
Question 10 :
3x + 6 = 4x – 12 ( reason: corresponding angles due to parallel lines)
simplify and get x, thus x = 18
to find 3x + 6 or 4x - 12(which is both the same),
3(18) + 6 = 60° , 4(18) - 12 = 60°
Question 11:
2x + 24 + x = 180 ( reason: interior angles due to parallel lines)
simplify again to get x, you will get x = 52
then find the individual by subbing in the value of x into the equation.
so 2x + 24 = 2(52)+24 = 128° and x = 52°
23) Store A: y=6.30÷2
y=3.15
Store B: y=3.2
Store C: y=3.25x
y=3.25 so Store A sells the cheapest so (A) is the answer
24) the area uses half of the diameter, not the whole diameter. so the answer is 5.5pi^2 (B)
25) 1/2 × 1/2 = 1/4 × 1/2 = 1/8 (D)
26) was done correctly and (D) is the correct answer
27) 2 (x-3) +1 =19
2 (x-3) = 19 - 1
(x-3) = 18 ÷ 2
x-3 = 9
x= 9+3
x=12 (D)
Answer: Hexagon, and is it the perimeter for above or below? below is 60cm and above is 20cm
Step-by-step explanation: Hexagons have 6 sides, and for perimeter just add up all the sides together
Answer:
x=3
Step-by-step explanation:
3x+5=14
-5 -5
3x=9
/3 /3
x=3