Answer:
28.5 m/s
18.22 m/s
Explanation:
h = 20 m, R = 20 m, theta = 53 degree
Let the speed of throwing is u and the speed with which it strikes the ground is v.
Horizontal distance, R = horizontal velocity x time
Let t be the time taken
20 = u Cos 53 x t
u t = 20/0.6 = 33.33 ..... (1)
Now use second equation of motion in vertical direction
h = u Sin 53 t - 1/2 g t^2
20 = 33.33 x 0.8 - 4.9 t^2 (ut = 33.33 from equation 1)
t = 1.17 s
Put in equation (1)
u = 33.33 / 1.17 = 28.5 m/s
Let v be the velocity just before striking the ground
vx = u Cos 53 = 28.5 x 0.6 = 17.15 m/s
vy = uSin 53 - 9.8 x 1.17
vy = 28.5 x 0.8 - 16.66
vy = 6.14 m/s
v^2 = vx^2 + vy^2 = 17.15^2 + 6.14^2
v = 18.22 m/s
<em>Given that:</em>
mass of the ball (m) = 0.5 Kg ,
ball strikes the wall (v₁) = 5 m/s ,
rebounds in opposite direction (v₂) = 2 m/s,
time duration (t) = 0.01 s,
<em> Determine the force (F) = ?</em>
We know that from Newton's II law,
<em>F = m. a</em> Newtons
(velocity acting in opposite direction, so <em>a = ( (v₁ + v₂)/t</em>
= m × (v₁ + v₂)/t
= 0.5 × (5 + 2)/0.01
= 350 N
<em>The force acting up on the ball is 350 N</em>
Velocity increases with speed