Answer:
<em>(a) t = 4.52 sec</em>
<em>(b) X = 1,156.49 m</em>
Explanation:
<u>Horizontal Launching
</u>
If an object is launched horizontally, its initial speed is zero in the y-coordinate and the horizontal component of the velocity
remains the same in time. The distance x is computed as
.
(a)
The vertical component of the velocity
starts from zero and gradually starts to increase due to the acceleration of gravity as follows

This means the vertical height is computed by

Where
is the initial height. Our fighter bomber is 100 m high, so we can compute the time the bomb needs to reach the ground by solving the above equation for t knowing h=0


(b)
We now compute the horizontal distance knowing 

A. the gas particles move faster and collide more frequently, which causes an increase in pressure.
Increasing temperature increases the energy of the gas, which causes the kinetic energy of the molecules to increase.
Being made mostly of gas is NOT a
characteristic of an inner planet. The correct answer between all the choices
given is the last choice or letter D. I am hoping that this answer has
satisfied your query and it will be able to help you in your endeavor, and if
you would like, feel free to ask another question.
True, They contain old stars and posses little gas or dust
Answer:
Q = 40.1 degrees
Explanation:
Given:
- The weight of the timber W = 670 N
- Water surface level from pivot y = 2.1 m
- The specific density of water Y = 9810 N / m^3
- Dimension of timber = (0.15 x 0.15 x 0.0036) m
Find:
- The angle of inclination Q that the timber makes with the horizontal.
Solution:
- Calculate the Flamboyant Force F_b acting upwards at a distance x along the timber, which is unknown:
F_b = Y * V_timber
F_b = 9810*0.15*0.15*x
F_b = 226.7*x N
- Take static equilibrium conditions for the timber, and take moments about the pivot:
(M)_p = 0
W*0.5*3.6*cos(Q) - x/2 * F_b*cos(Q) = 0
- Plug values in:
670*0.5*3.6 - x^2 * 0.5*226.7 = 0
x^2 = 1206 / 113.35
x = 3.26 m
- Now use the value of x and vertical height y to compute the angle of inclination to be:
sin(Q) = y / x
sin(Q) = 2.1 / 3.26
Q = sin^-1 (0.6441718)
Q = 40.1 degrees