Hello!
"Increase" means to add. We must find out what 45% of 140 fluid ounces is, and to do that we must first convert the percentage to a decimal and then multiply it by the amount of fluid ounces.
I know, that's probably a lot to take in! :D
45% ÷ 100 = 0.45 as a decimal
0.45 × 140 = 63
Add this to the amount of fluid ounces:
140 + 63 = 203
Final Answer:
203 fluid ounces.
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Step-by-step explanation:
<u>Step 1: Define</u>
<u />
<u />
<u />
<u>Step 2: Evaluate</u>
- Evaluate Exponents:

- Evaluate Multiplication:

- Evaluate Subtraction:

Answer:
Mean=2.53
median=2
mode=2
range=3
Step-by-step explanation:
1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4
MEAN
Add up all data values to get the sum
Count the number of values in your data set
Divide the sum by the count
38/15=2.53
MEDIAN
Arrange data values from lowest to the highest value
The median is the data value in the middle of the set
If there are 2 data values in the middle the median is the mean of those 2 values.
MODE
Mode is the value or values in the data set that occur most frequently.
RANGE
18-15=3
Hello There!
.84 ÷ .02 ≈ 42
WORK SHOWN IN IMAGE ATTACHED
Answer:
0.2514 = 25.14% probability that the diameter of a selected bearing is greater than 85 millimeters.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

Find the probability that the diameter of a selected bearing is greater than 85 millimeters.
This is 1 subtracted by the pvalue of Z when X = 85. Then



has a pvalue of 0.7486.
1 - 0.7486 = 0.2514
0.2514 = 25.14% probability that the diameter of a selected bearing is greater than 85 millimeters.