1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Makovka662 [10]
3 years ago
11

Please help me solve this! 50 points.

Mathematics
2 answers:
Alex73 [517]3 years ago
7 0
Solve for x in the second equation.

Just add 1 to both sides to get x = 9y + 1

Then plug 9y + 1 into the first equation for x

7(9y+1) - 9y = 1

63y + 7 - 9y = 1

54y + 7 = 1

54y = -6

y = -6/54 or -1/9

Plug y back into one of the equations to get x = 0

Answer: (0, -1/9)
gregori [183]3 years ago
7 0
The solution is 0! Because 9x(-1/9)=x-1 which would give you 0
You might be interested in
2. What is the value of 9x – 4y if x = 3 and y = 2?<br> F. 12.<br> G. 19<br> H. 93<br> 1. 27<br> H
Igoryamba

Answer:

G. 19 is your answer dear

Step-by-step explanation:

9(3)-4(2)

27-8 = 19

3 0
3 years ago
The last time Alejandro's height was measured he was 61.5 inches tall. He was measured again today and is now 68.7 inches tall.
stiv31 [10]

Answer:

He grew 7.2 inches.

Step-by-step explanation:

68.7-61.5=7.2

Expression:

68.7-61.5=g

or

61.5+g=68.7

6 0
3 years ago
Please help me understand this problem! I don’t understand the methods to understand how to solve it
Doss [256]

Answer:

Perimeter at the big rectangle is 156 cm.

Step-by-step explanation:

Let's see how to calculate it.

1. First of all you know that perimeter in the blue one is 20cm, so imagine this:

L (long side); S (short side)

2L + 2S =20

and we consider that L = 4S

So, solving the equation:

2.4S + 2S =20

10S=20

S=20/10

S=2

L=8

2. Side at the gold square is 8, the same at the long side in the blue rectangle. So, if you see on the right side in the big one, we got 2 + 8 + 8 + (?). Take a look to the green. Green square is the gold + a short piece and you can understand the short piece as 2 short sides from the blue. If we give numbers we have 8 + 2 + 2, 12.

Now, 2+8+8+12 = 30cm

3. Let's go to the long side in the big one.

We have long side from blue (8) and as you see, side at the orange square must be side at the yellow + short at the blue, so 8+2 =10. We have four oranges square so 10+10+10+10=40, and +8 =48

4. Now that we have the two sides in the big one, let's find the perimeter with the rectangle formula:

2L + 2S =P

2.48 + 2.30 = 156 cm.

7 0
3 years ago
Escribe una ecuación para una linea que pase por los puntos (3,5) y (6,3). Responder con trabajo de apoyo​
Blababa [14]

Answer:

y = -\frac{2}{3}x + 7

Step-by-step explanation:

Ambos puntos (3, 5) y (6, 3) están en esta línea.

8 0
3 years ago
Find the derivative of following function.
Aleks04 [339]

Answer:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \tan^2 x + 5x \big) + \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( 2 \sec^2 x \tan x + 5 \big)}{ \big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)} + \frac{2 \cot x \csc^2 x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2 \big( \sin^2x + 6 \big)} - \frac{2 \cos x \sin x \big( \cos^2 x - 3\sqrt{x}  + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)^2}

General Formulas and Concepts:
<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (cu)' = cu'

Derivative Property [Addition/Subtraction]:
\displaystyle (u + v)' = u' + v'

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:
\displaystyle (uv)' = u'v + uv'

Derivative Rule [Quotient Rule]:
\displaystyle \bigg( \frac{u}{v} \bigg)' = \frac{vu' - uv'}{v^2}

Derivative Rule [Chain Rule]:
\displaystyle [u(v)]' = u'(v)v'

Step-by-step explanation:

*Note:

Since the answering box is <em>way</em> too small for this problem, there will be limited explanation.

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle y = \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \times \frac{\tan^2 x + 5x}{\csc^2 x + 3}

<u>Step 2: Differentiate</u>

We can differentiate this function with the use of the given <em>derivative rules and properties</em>.

Applying Product Rule:

\displaystyle y' = \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' \frac{\tan^2 x + 5x}{\csc^2 x + 3} + \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) '

Differentiating the first portion using Quotient Rule:

\displaystyle \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' = \frac{\big( \cos^2 x - 3\sqrt{x} + 6 \big)' \big( \sin^2 x + 6 \big) - \big( \sin^2 x + 6 \big)' \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2}

Apply Derivative Rules and Properties, namely the Chain Rule:

\displaystyle \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - \big( 2 \sin x \cos x \big) \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2}

Differentiating the second portion using Quotient Rule again:

\displaystyle \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) ' = \frac{\big( \tan^2 x + 5x \big)' \big( \csc^2 x + 3 \big) - \big( \csc^2 x + 3 \big)' \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Apply Derivative Rules and Properties, namely the Chain Rule again:
\displaystyle \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) ' = \frac{\big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) - \big( -2 \csc^2 x \cot x \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Substitute in derivatives:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - \big( 2 \sin x \cos x \big) \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2} \frac{\tan^2 x + 5x}{\csc^2 x + 3} + \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \frac{\big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) - \big( -2 \csc^2 x \cot x \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Simplify:

\displaystyle y' = \frac{\big( \tan^2 x + 5x \big) \bigg[ \big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - 2 \sin x \cos x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \bigg]}{\big( \sin^2 x + 6 \big)^2 \big( \csc^2 x + 3 \big)} + \frac{\big( \cos^2 x - 3\sqrt{x} +6 \big) \bigg[ \big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) + 2 \csc^2 x \cot x \big( \tan^2 x + 5x \big) \bigg] }{\big( \csc^2 x + 3 \big)^2 \big( \sin^2 x + 6 \big)}

We can rewrite the differential by factoring and common mathematical properties to obtain our final answer:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \tan^2 x + 5x \big) + \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( 2 \sec^2 x \tan x + 5 \big)}{ \big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)} + \frac{2 \cot x \csc^2 x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2 \big( \sin^2x + 6 \big)} - \frac{2 \cos x \sin x \big( \cos^2 x - 3\sqrt{x}  + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)^2}

∴ we have found our derivative.

---

Learn more about derivatives: brainly.com/question/26836290

Learn more about calculus: brainly.com/question/23558817

---

Topic: Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

8 0
3 years ago
Read 2 more answers
Other questions:
  • At what point should an open circle be drawn (-1,0) (0,0) (0,1) (1,0)
    13·1 answer
  • The coordinates are 5 -2 3-1 -4 4 -3 8 -14 find the shape with out plotting
    8·1 answer
  • Frank Friedman writes a $45 check, but his account has only $20 in it. He must also pay Central City Power and Water charges $25
    15·2 answers
  • The Pythagorean theorem, a² + b2 = c?, for c
    10·1 answer
  • Va rog e urgent am nevoie de raspuns
    15·1 answer
  • 40 tens equal how many hundreds
    12·2 answers
  • Please jawab kakak ​
    11·1 answer
  • Mom used 1/2 package of pepperoni putting an equal amount on each of the three pizza she made what fration of the package of pep
    8·1 answer
  • With this diagram what could be the values of a and b?
    15·2 answers
  • Which of these polynomial functions has the largest second derivative at X=0?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!