Answer:
a)
is the speed of each proton
b) 
Explanation:
Given:
radius of path of motion, 
we know charge on protons, 
magnetic field strength, 
we've mass of proton, 
a)
From the equivalence of magnetic force and the centripetal force on the proton:



where:
v = speed of the proton

is the speed of each proton
b)
Now the centripetal force on each proton:



The angular velocity is defined as "the angle changing over time."
From the given of the problem:
m = 100g
rate of revolution = 50 rev / min
Therefore, using the formula:
angular velocity = rate of revolution x 2*pi / revolution
Substituting:
angular velocity = (50 revs / min) x ( 2*pi radians / rev ) = 100*pi radians / min
As you can see, mass is not a part of the equation for solving the angular velocity therefore the amount of mass does not affect its value.
Answer:
3. Her angular speed increases because her angular momentum is the same but her moment of inertia decreases
Explanation:
II ωi the intial angular momentum of the skater. Her angular momentum changes to If ωf after pulling her arms in.
It must be noted that If is less than II, then it is because her arms now go round not far from the rotation axis which brings down the mementos of inertia.
Angular momentum does not change since torque is O.
Note: the mathematical representations are better written on the attached diagram.
Answer:
v₀ = 16.55 m/s
Explanation:
This motion of the ball can be modeled as a projectile motion with following data:
R = Range of Projectile = 27.5 m
θ = Launch Angle = 50°
g = acceleration due to gravity = 9.81 m/s²
v₀ = Initial Speed of Ball = ?
Therefore, using formula for range of projectile, we have:

<u>v₀ = 16.55 m/s</u>
Answer:
depends on the voltage of battery
Explanation:
for example if you connect a battery of 6V,6V will be provided