Answer:
I'm not for sure but I think it's a
Answer:
C) Reflected over the x-axis and rotated 90° counterclockwise
Step-by-step explanation:
Do you know the muffin man 2*+%9272
9514 1404 393
Answer:
1) f⁻¹(x) = 6 ± 2√(x -1)
3) y = (x +4)² -2
5) y = (x -4)³ -4
Step-by-step explanation:
In general, swap x and y, then solve for y. Quadratics, as in the first problem, do not have an inverse function: the inverse relation is double-valued, unless the domain is restricted. Here, we're just going to consider these to be "solve for ..." problems, without too much concern for domain or range.
__
1) x = f(y)
x = (1/4)(y -6)² +1
4(x -1) = (y-6)² . . . . . . subtract 1, multiply by 4
±2√(x -1) = y -6 . . . . square root
y = 6 ± 2√(x -1) . . . . inverse relation
f⁻¹(x) = 6 ± 2√(x -1) . . . . in functional form
__
3) x = √(y +2) -4
x +4 = √(y +2) . . . . add 4
(x +4)² = y +2 . . . . square both sides
y = (x +4)² -2 . . . . . subtract 2
__
5) x = ∛(y +4) +4
x -4 = ∛(y +4) . . . . . subtract 4
(x -4)³ = y +4 . . . . . cube both sides
y = (x -4)³ -4 . . . . . . subtract 4
Answer:
11 over 3 is 2 and 2/3. 2 4/5 is 14/5
Step-by-step explanation:
When making a fraction a mixed number, divide the numerator by the denominator. What ever number you have left will be ur numerator,and denominator always stays the same. Making fractions improper: multiply denominator by the whole number (2) and then add the numerator to the answer. denominator stays the same.