Answer: ![(98.04,\ 98.36)](https://tex.z-dn.net/?f=%2898.04%2C%5C%2098.36%29)
Step-by-step explanation:
Given : Sample size of healthy adults: n= 106
Degree of freedom = df =n-1 = 105
Sample mean body temperature : ![\overline{x}=98.2](https://tex.z-dn.net/?f=%5Coverline%7Bx%7D%3D98.2)
Sample standard deviation : ![s= 0.62](https://tex.z-dn.net/?f=s%3D%200.62)
Significance level ; ![\alpha= 1-0.99=0.01](https://tex.z-dn.net/?f=%5Calpha%3D%201-0.99%3D0.01)
∵ population standard deviation is unknown , so we use t- critical value.
Confidence interval for the population mean :
![\overline{x}\pm t_{\alpha/2, df}\dfrac{s}{\sqrt{n}}](https://tex.z-dn.net/?f=%5Coverline%7Bx%7D%5Cpm%20t_%7B%5Calpha%2F2%2C%20df%7D%5Cdfrac%7Bs%7D%7B%5Csqrt%7Bn%7D%7D)
Using t-distribution table , we have
Critical value for df = 105 and
= ![t_{\alpha/2, df}=t_{0.005 , 105}=2.623](https://tex.z-dn.net/?f=t_%7B%5Calpha%2F2%2C%20df%7D%3Dt_%7B0.005%20%2C%20105%7D%3D2.623)
A 99% confidence interval estimate of the mean body temperature of all healthy humans will be :
![98.2\pm (2.623)\dfrac{0.62}{\sqrt{106}}](https://tex.z-dn.net/?f=98.2%5Cpm%20%282.623%29%5Cdfrac%7B0.62%7D%7B%5Csqrt%7B106%7D%7D)
![98.2\pm (2.623)(0.0602197234662)](https://tex.z-dn.net/?f=98.2%5Cpm%20%282.623%29%280.0602197234662%29)
![98.2\pm (0.157956334652)](https://tex.z-dn.net/?f=98.2%5Cpm%20%280.157956334652%29)
![\approx98.2\pm 0.16](https://tex.z-dn.net/?f=%5Capprox98.2%5Cpm%200.16)
![(98.2-0.16,\ 98.2+0.16)](https://tex.z-dn.net/?f=%2898.2-0.16%2C%5C%2098.2%2B0.16%29)
![(98.04,\ 98.36)](https://tex.z-dn.net/?f=%2898.04%2C%5C%2098.36%29)
Hence, a 99% confidence interval estimate of the mean body temperature of all healthy humans = ![(98.04,\ 98.36)](https://tex.z-dn.net/?f=%2898.04%2C%5C%2098.36%29)