Answer:
V = 113.04
Step-by-step explanation:
Volume of a sphere:
V = 4/3πr³
V = 4/3(3.14)3³
V = 4/3(3.14)27
V = 113.04
Answer:
47.15%
Step-by-step explanation:
Getting a raise of 15% would increase the teacher's salary by 300. 943 of 2300 is 47.15%.
Answer:
Option C is correct.
Step-by-step explanation:
y = x^2-x-3 eq(1)
y = -3x + 5 eq(2)
We can solve by substituting the value of y in eq(2) in the eq(1)
-3x+5 = x^2-x-3
x^2-x+3x-3-5=0
x^2+2x-8=0
Now factorizing the above equation
x^2+4x-2x-8=0
x(x+4)-2(x+4)=0
(x-2)(x+4)=0
(x-2)=0 and (x+4)=0
x=2 and x=-4
Now finding the value of y by placing value of x in the above eq(2)
put x =2
y = -3x + 5
y = -3(2) + 5
y = -6+5
y = -1
Now, put x = -4
y = -3x + 5
y = -3(-4) + 5
y = 12+5
y =17
so, when x=2, y =-1 and x=-4 y=17
(2,-1) and (-4,17) is the solution.
So, Option C is correct.
Answer:
Step-by-step explanation:
Let s represent the son's age now. Then s+32 is the father's age. In 4 years, we have ...
5(s+4) = (s+32)+4
5s +20 = s +36 . . . . . eliminate parentheses
4s = 16 . . . . . . . . . . . . subtract s+20
s = 4
The son is now 4 years old; the father, 36.
_____
<em>Alternate solution</em>
In 4 years, the ratio of ages is ...
father : son = 5 : 1
The difference of their ages at that time is 5-1 = 4 "ratio units". Since the difference in ages is 32 years, each ratio unit must stand for 32/4 = 8 years. That is, the future age ratio is ...
father : son = 40 : 8
So, now (4 years earlier), the ages must be ...
father: 36; son: 4.