tan²(<em>θ</em>) - sin²(<em>θ</em>) = sin²(<em>θ</em>)/cos²(<em>θ</em>) - sin²(<em>θ</em>)
-- because tan(<em>θ</em>) = sin(<em>θ</em>)/cos(<em>θ</em>) by definition of tangent --
… = sin²(<em>θ</em>) (1/cos²(<em>θ</em>) - 1)
-- we pull out the common factor of sin²(<em>θ</em>) from both terms --
… = sin²(<em>θ</em>) (1/cos²(<em>θ</em>) - cos²(<em>θ</em>)/cos²(<em>θ</em>))
-- because <em>x</em>/<em>x</em> = 1 (so long as <em>x</em> ≠ 0) --
… = sin²(<em>θ</em>) ((1 - cos²(<em>θ</em>))/cos²(<em>θ</em>))
-- we simply combine the fractions, which we can do because of the common denominator of cos²(<em>θ</em>) --
… = sin²(<em>θ</em>) (sin²(<em>θ</em>)/cos²(<em>θ</em>))
-- due to the Pythagorean identity, sin²(<em>θ</em>) + cos²(<em>θ</em>) = 1 --
… = sin²(<em>θ</em>) tan²(<em>θ</em>)
-- again, by definition of tan(<em>θ</em>) --
18a-14 Would be your answer because you are basically distributing which is taking the number on the out side of the parenthesis and multiplying it by all the numbers inside of the parenthesis
Answer:
a.
b.
Step-by-step explanation:
We are given that
Speed of red bike, v=24 km/h
Speed of blue bike, v'=12km/h
Distance of red bike when t=0
=10 km north
Distance of blue bike when t=0
=6km east
a. We have to find the expression of distance of red bike from Lawrence.

Let t be the time taken by red bike
Distance of red bike from Lawrence is given by


b.
Distance of the blue bike from Lawrence


So first we cross multiply
7/a times 7/40 which equals = 28a and 280
Divided both sides by 28.
28a divided by 28 = A. Then 280 divided = 10
So a = 10
Answer:
22/5
Step-by-step explanation:
4 
new numerator for improper fraction = (4 x 5) + 2 = 20 + 2 = 22
=> 22/5