The answer is 6 degree.
Step by step process
The formula for calculating the measure of each exterior angle of a polygon is (360/n).
The number of sides of 56-gon(n) = 56.
So, each exterior angle
= (360/56)
= 6.43 or
6(approximately)
I am going to say 15 but I am not sure since there is no pic
Answer:
100 and 80
Step-by-step explanation:
Let x = be the first angle
x-20 is the second angle
They are supplementary so they add to 180
x+x-20 = 180
Combine like terms
2x-20 =180
2x-20+20 =180+20
2x= 200
Divide by 2
2x/2 = 200/2
x= 100
The first angle is 100 and the second is x-20
x-20 = 100-20=80
The two angles are 100 and 80
Complete Question
A milling process has an upper specification of 1.68 millimeters and a lower specification of 1.52 millimeters. A sample of parts had a mean of 1.6 millimeters with a standard deviation of 0.03 millimeters. what standard deviation will be needed to achieve a process capability index f 2.0?
Answer:
The value required is
Step-by-step explanation:
From the question we are told that
The upper specification is 
The lower specification is
The sample mean is
The standard deviation is 
Generally the capability index in mathematically represented as
![Cpk = min[ \frac{USL - \mu }{ 3 * \sigma } , \frac{\mu - LSL }{ 3 * \sigma } ]](https://tex.z-dn.net/?f=Cpk%20%20%3D%20%20min%5B%20%5Cfrac%7BUSL%20-%20%20%5Cmu%20%7D%7B%203%20%2A%20%20%5Csigma%20%7D%20%20%2C%20%20%5Cfrac%7B%5Cmu%20-%20LSL%20%7D%7B%203%20%2A%20%20%5Csigma%20%7D%20%5D)
Now what min means is that the value of CPk is the minimum between the value is the bracket
substituting value given in the question
![Cpk = min[ \frac{1.68 - 1.6 }{ 3 * 0.03 } , \frac{1.60 - 1.52 }{ 3 * 0.03} ]](https://tex.z-dn.net/?f=Cpk%20%20%3D%20%20min%5B%20%5Cfrac%7B1.68%20-%20%201.6%20%7D%7B%203%20%2A%20%200.03%20%7D%20%20%2C%20%20%5Cfrac%7B1.60%20-%20%201.52%20%7D%7B%203%20%2A%20%200.03%7D%20%5D)
=> ![Cpk = min[ 0.88 , 0.88 ]](https://tex.z-dn.net/?f=Cpk%20%20%3D%20%20min%5B%200.88%20%2C%200.88%20%20%5D)
So

Now from the question we are asked to evaluated the value of standard deviation that will produce a capability index of 2
Now let assuming that

So

=> 
=> 
So

=> 
Hence
![Cpk = min[ 2, 2 ]](https://tex.z-dn.net/?f=Cpk%20%20%3D%20%20min%5B%202%2C%202%20%5D)
So

So
is the value of standard deviation required
Answer:
1) as-16a
taknig a as common
=a(s-16)
2)as-4a³
taking a as common
=a(s-4a²)
3)2a³+8a-4a²-16
taking common terms
=2a(a²+4)-4(a²+4)
=(2a-4)(a²+4)
again taking common
=2(a-2)(a²+4)
i hope this will help you :)