<span>K) = 4/51 since there are four aces in the deck but only 51 cards left after the king has been removed. WITH REPLACEMENT: Find the probability of drawing three queens in a row, with replacement. We pick a card, write down what it is, then put it back in the deck and draw again.</span>
As the volume of cuboid is given by,
l×b×h
as the dimensions are doubled,
l2×b2×h2
5×2×4×2×3×2
= 480 cm^3
Replace x with π/2 - x to get the equivalent integral

but the integrand is even, so this is really just

Substitute x = 1/2 arccot(u/2), which transforms the integral to

There are lots of ways to compute this. What I did was to consider the complex contour integral

where γ is a semicircle in the complex plane with its diameter joining (-R, 0) and (R, 0) on the real axis. A bound for the integral over the arc of the circle is estimated to be

which vanishes as R goes to ∞. Then by the residue theorem, we have in the limit

and it follows that

56 minus 8 is 48
48 is Diane's savings.