Answer:
<em>The correct option is Although the F1 generation will all show the dominant trait, the offspring will all be heterozygous and increase chances of future variation.</em>
Explanation:
The cross for the offsrings that will be produced by F1 generation is shown below:
a a
A Aa Aa
A Aa Aa
As we can see that all the offsprings in the F1 generation will have heterozygous genes but only the dominant trait will be seen in the phenotype of the F1 generation.
A cross between the F1 generation will give the following results:
A a
A AA Aa
a Aa aa
This cross shows that there will be increases genetic and phenotype variations in offsprings that will be produced by the F1 plants.
So um can sum one make sure i’m write?
The process by which organisms create sugars (specifically glucose) from non-carbohydrate precursors is known as gluconeogenesis.
- The only energy source used by the brain, testes, erythrocytes, and renal medulla is glucose, with the exception of ketone bodies during fasting. There are three highly exergonic stages in glycolysis. Hexokinase, phosphofructokinase, and pyruvate kinase are among the enzymes involved in these additional regulatory stages. In biological processes, both forward and backward reactions are possible.
- Similar to glycolysis, but with the process going the other way, is gluconeogenesis. Fructose-1,6-bP, glucose-6-P, and pyruvate all undergo fairly spontaneous conversions in the process of gluconeogenesis, which is why these reactions are tightly controlled.
- For the organism to function properly, energy conservation is crucial. Gluconeogenesis is suppressed when there is an abundance of energy available.
Therefore, gluconeogenesis conserve more energy.
Learn more about gluconeogenesis:
brainly.com/question/1425339
#SPJ4
It is the major sight of water absorption.