Answer:
Samarium
Explanation:
The element Sm describe is called Samarium. This element has unique sets of properties that makes it very unique and distinct.
The lanthanides are found in the f-block on the periodic table of elements.
This element is a moderately hard silvery metal that readily oxidizes in air. It assumes an oxidation state of +3. The element has an atomic number of 62
<u>Answer:</u> The mass of iron in the ore is 10.9 g
<u>Explanation:</u>
We are given:
Mass of iron (III) oxide = 15.6 g
We know that:
Molar mass of Iron (III) oxide = 159.69 g/mol
Molar mass of iron atom = 55.85 g/mol
As, all the iron in the ore is converted to iron (III) oxide. So, the mass of iron in iron (III) oxide will be equal to the mass of iron present in the ore.
To calculate the mass of iron in given mass of iron (III) oxide, we apply unitary method:
In 159.69 g of iron (III) oxide, mass of iron present is 
So, in 15.6 g of iron (III) oxide, mass of iron present will be = 
Hence, the mass of iron in the ore is 10.9 g
In this question we have given the gram of water and we know that 1 mole of water = 18 gram of water and 27 g of water contain 1.5 g of water 27 / 18 = 1.5 g
As we know that avogandro'S no is equal 6.022*1023
1.5g * 6.022*1023 = 9.0 * 1023 molecules present in each 27 g of water.
I hope you will understand better now if you like then comment below and tell me. Best of luck.
The correct answer is this: THE NUCLEUS OF AN ATOM SPLITS INTO FRAGMENTS, RELEASING A LARGE AMOUNT OF ENERGY.
Nuclear fission is the process in which the nucleus of a radioactive element split into two different nucleic of smaller sizes of different elements with a large release of energy. Nuclear fission process is usually used to provide energy for electricity generation.
Answer:
Hope this helps:)
Explanation:
The values for the table entries are reduction potentials, so lithium at the top of the list has the most negative number, indicating that it is the strongest reducing agent. The strongest oxidizing agent is fluorine with the largest positive number for standard electrode potential.
Elemental fluorine, for example, is the strongest common oxidizing agent.
Lithium metal is therefore the strongest reductant (most easily oxidized) of the alkali metals in aqueous solution. The standard reduction potentials can be interpreted as a ranking of substances according to their oxidizing and reducing power