Answer:
D
Explanation:
The amount of energy released or absorbed is equal the product of the mass, the specific heat capacity and the temperature change. The temperature change being the difference between the final and initial temperature.
Q = mc∆T
Q = heat energy (Joules, J) m = mass of a substance (kg) c = specific heat (units J/g∙K)
∆ is a symbol meaning "the change in" ∆T = change in temperature (Kelvins, K)
From the data provided in the question, we can deduce that:
Q = 16.7KJ = 16,700J
m = 225g
c = 1.74J/g.k
For the temperature, let the final temperature be f. This means our ∆T = f - 20
16,700 = 225 * 1.74 * (f - 20)
16700 = 391.5 (f - 20)
f - 20 = 16700/391.5
f - 20 = 42.7
f = 20 + 42.7 = 62.7
Hence the final temperature is 62.7 degrees Celsius
This statement is <u>TRUE.</u>
Explanation:
Due to the high heat capacity of water, it takes much more energy to have a gram of water raised by one degree compared to one gram of land. This is why during a hot day, the ground gets hotter faster than the adjacent oceans or adjacent lakes. It also takes water to lose the same amount of energy to have its temperatures drop by one degree as compared to land. During the night, therefore, this is why adjacent water bodies remain relatively warmer than land.
Cellular respiration uses glucose and oxygen to produce carbon dioxide and water, while the process of photosynthesis is used by plants and other photosynthetic organisms to produce energy.
Hydrocarbons
Hope this helps :)