Answer:
what is cheese ravioli tell Martha to go to the grocery store and get some chef Boyardee ravioli
1/2 chance per flip
1/2 times 4 is 1/8
its 1/8 chance or 12.5%
Taking
![y=y(x)](https://tex.z-dn.net/?f=y%3Dy%28x%29)
and differentiating both sides with respect to
![x](https://tex.z-dn.net/?f=x)
yields
![\dfrac{\mathrm d}{\mathrm dx}\bigg[3x^2+y^2\bigg]=\dfrac{\mathrm d}{\mathrm dx}\bigg[7\bigg]\implies 6x+2y\dfrac{\mathrm dy}{\mathrm dx}=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B3x%5E2%2By%5E2%5Cbigg%5D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B7%5Cbigg%5D%5Cimplies%206x%2B2y%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%3D0)
Solving for the first derivative, we have
![\dfrac{\mathrm dy}{\mathrm dx}=-\dfrac{3x}y](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%3D-%5Cdfrac%7B3x%7Dy)
Differentiating again gives
![\dfrac{\mathrm d}{\mathrm dx}\bigg[6x+2y\dfrac{\mathrm dy}{\mathrm dx}\bigg]=\dfrac{\mathrm d}{\mathrm dx}\bigg[0\bigg]\implies 6+2\left(\dfrac{\mathrm dy}{\mathrm dx}\right)^2+2y\dfrac{\mathrm d^2y}{\mathrm dx^2}=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B6x%2B2y%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B0%5Cbigg%5D%5Cimplies%206%2B2%5Cleft%28%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%5Cright%29%5E2%2B2y%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dx%5E2%7D%3D0)
Solving for the second derivative, we have
![\dfrac{\mathrm d^2y}{\mathrm dx^2}=-\dfrac{3+\left(\frac{\mathrm dy}{\mathrm dx}\right)^2}y=-\dfrac{3+\frac{9x^2}{y^2}}y=-\dfrac{3y^2+9x^2}{y^3}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dx%5E2%7D%3D-%5Cdfrac%7B3%2B%5Cleft%28%5Cfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%5Cright%29%5E2%7Dy%3D-%5Cdfrac%7B3%2B%5Cfrac%7B9x%5E2%7D%7By%5E2%7D%7Dy%3D-%5Cdfrac%7B3y%5E2%2B9x%5E2%7D%7By%5E3%7D)
Now, when
![x=1](https://tex.z-dn.net/?f=x%3D1)
and
![y=2](https://tex.z-dn.net/?f=y%3D2)
, we have
Substitute the 7 in anywhere there is an x.
49-5=44