1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
egoroff_w [7]
3 years ago
9

20 people is only 4/5 of the total people....what is the total

Mathematics
2 answers:
rewona [7]3 years ago
6 0
Let total number of people be x
Therefore, 4/5 of x = 20
4/5*x = 20
x = 20*5/4
x = 5*5
x = 25
sleet_krkn [62]3 years ago
4 0
The total is 20*5/4=25
You might be interested in
A 16 ounce box of cereal is priced at $3.68. Find the cost per ounce *
ZanzabumX [31]

Answer:

0.23$

Step-by-step explanation:

16 ounce box of cereal is priced at =3.68$

∴1 ounce box of cereal is priced at=(3.68/16)$

                                                         =0.23$

6 0
3 years ago
A beetle is 1/5 inch wide and 2/5 inch long. How much greater is the beetle's length than its width?
Neporo4naja [7]

Answer:

2 times as long

Step-by-step explanation:

2/5 divded by 1/5 equals two

6 0
3 years ago
A recipe uses 5/8 cups of vegetable oil and 2 cups of water. Write the ratio of vegtable oil to water. THEN find the value of th
denis23 [38]

Answer:

5/8 : 2

Step-by-step explanation:

3 0
3 years ago
It's all politics: A politician in a close election race claims that 52% of the voters support him. A poll is taken in which 200
riadik2000 [5.3K]

Answer:

a) P(x ≤ 0.44) = 0.02275

b) The probability of obtaining a sample proportion less than or equal to 0.44 is very low (2.275%), hence, it would be unusual to obtain a sample proportion less than or equal to 0.44.

c) P(x ≤ 0.50) = 0.30854

A probability of 30.854% doesn't scream unusual, but it is still not a very high probability. So, it is still slightly unusual to obtain a sample proportion of less than half of the voters that don't support the politician.

Step-by-step explanation:

Given,

p = population proportion that support the politician = 0.52

n = sample size = 200

(np = 104) and [np(1-p) = 49.92] are both greater than 10, So, we can treat this problem like a normal distribution problem.

This is a normal distribution problem with

Mean = μ = 0.52

Standard deviation of the sample proportion in the distribution of sample means = σ = √[p(1-p)/n]

σ = √[0.52×0.48)/200]

σ = 0.035 ≈ 0.04

a) Probability of obtaining a sample proportion that is less than or equal to 0.44. P(x ≤ 0.44)

We first normalize/standardize/obtain z-scores for a sample proportion of 0.44

The standardized score for any value is the value minus the mean then divided by the standard deviation.

z = (x - μ)/σ = (0.44 - 0.52)/0.04 = -2.00

To determine the probability of obtaining a sample proportion that is less than or equal to 0.44.

P(x ≤ 0.44) = P(z ≤ -2)

We'll use data from the normal probability table for these probabilities

P(x ≤ 0.44) = P(z ≤ -2) = 0.02275

b) Would it be unusual to obtain a sample proportion less than or equal to 0.44 if the politician's claim is true?

The probability of obtaining a sample proportion less than or equal to 0.44 is 0.02275; that is, 2.275%.

The probability of this occurring is very low, hence, it would be unusual to obtain a sample proportion less than or equal to 0.44.

c) If the claim is true, would it be unusual for less than half of the voters in the sample to support the politician?

Sample proportion that matches half of the voters = 0.50

P(x < 0.50)

We follow the same pattern as in (a)

We first normalize/standardize/obtain z-scores for a sample proportion of 0.50

z = (x - μ)/σ = (0.50 - 0.52)/0.04 = -0.50

To determine the probability of obtaining a sample proportion that is less than 0.50

P(x < 0.50) = P(z < -0.50)

We'll use data from the normal probability table for these probabilities

P(x < 0.50) = P(z < -0.50) = 1 - P(z ≥ -0.50) = 1 - P(z ≤ 0.50) = 1 - 0.69146 = 0.30854

Probability of obtaining a sample proportion of less than half of the voters that support the politician = 0.30854 = 30.854%

This value is still not very high, it would still he unusual to obtain such a sample proportion that don't support the politician, but it isn't as unusual as that calculated in (a) and (b) above.

Hope this Helps!!!

3 0
3 years ago
A metal beam was brought from the outside cold into a machine shop where the temperature was held at 65degreesF. After 5 ​min, t
ivolga24 [154]

Answer:

The beam initial temperature is 5 °F.

Step-by-step explanation:

If T(t) is the temperature of the beam after t minutes, then we know, by Newton’s Law of Cooling, that

T(t)=T_a+(T_0-T_a)e^{-kt}

where T_a is the ambient temperature, T_0 is the initial temperature, t is the time and k is a constant yet to be determined.

The goal is to determine the initial temperature of the beam, which is to say T_0

We know that the ambient temperature is T_a=65, so

T(t)=65+(T_0-65)e^{-kt}

We also know that when t=5 \:min the temperature is T(5)=35 and when t=10 \:min the temperature is T(10)=50 which gives:

T(5)=65+(T_0-65)e^{k5}\\35=65+(T_0-65)e^{-k5}

T(10)=65+(T_0-65)e^{k10}\\50=65+(T_0-65)e^{-k10}

Rearranging,

35=65+(T_0-65)e^{-k5}\\35-65=(T_0-65)e^{-k5}\\-30=(T_0-65)e^{-k5}

50=65+(T_0-65)e^{-k10}\\50-65=(T_0-65)e^{-k10}\\-15=(T_0-65)e^{-k10}

If we divide these two equations we get

\frac{-30}{-15}=\frac{(T_0-65)e^{-k5}}{(T_0-65)e^{-k10}}

\frac{-30}{-15}=\frac{e^{-k5}}{e^{-k10}}\\2=e^{5k}\\\ln \left(2\right)=\ln \left(e^{5k}\right)\\\ln \left(2\right)=5k\ln \left(e\right)\\\ln \left(2\right)=5k\\k=\frac{\ln \left(2\right)}{5}

Now, that we know the value of k we can use it to find the initial temperature of the beam,

35=65+(T_0-65)e^{-(\frac{\ln \left(2\right)}{5})5}\\\\65+\left(T_0-65\right)e^{-\left(\frac{\ln \left(2\right)}{5}\right)\cdot \:5}=35\\\\65+\frac{T_0-65}{e^{\ln \left(2\right)}}=35\\\\\frac{T_0-65}{e^{\ln \left(2\right)}}=-30\\\\\frac{\left(T_0-65\right)e^{\ln \left(2\right)}}{e^{\ln \left(2\right)}}=\left(-30\right)e^{\ln \left(2\right)}\\\\T_0=5

so the beam started out at 5 °F.

6 0
3 years ago
Other questions:
  • Identify the number sets to which number 4/5 belongs to.
    7·1 answer
  • What is 6/12 + 3/12 + 4/12+1 8/12+2 9/12?Please turn into mixed number
    12·2 answers
  • I’m a mixed number. My denominator is the sixth prime number. My numerator is one less than my denominator. I am greater than fi
    6·1 answer
  • in an experimentation social interaction 4 people will sit in 4 seats in a row, in how many ways can this be done?_____
    11·1 answer
  • If a = b and b = c, which statement must be true?
    11·1 answer
  • What is -1 26/100 in simplest form
    10·1 answer
  • *Extremely Easy I-Ready* If Jeremy has 30 cookies, and wants to split it between 2 friends including himself, how many cookies w
    5·2 answers
  • The dimensions of a 7 -cm by 2 -cm rectangle are multiplied by 3 . how is the area affected ?
    6·1 answer
  • Write an equation to find the area of each figure. Then determine the area.
    15·1 answer
  • Please help with this, 50 points. the question is in the photo.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!