Answer:
The time the patient expected to survive after diagnosis is 29 years.
Step-by-step explanation:
It is provided that the mean survival time after diagnosis for a certain disease is 15 years with a standard deviation of 5 years.
That is,

An individual's predicted survival time is <em>a</em> = 2.8 standard deviations beyond the mean.
Compute the time the patient expected to survive after diagnosis as follows:


Thus, the time the patient expected to survive after diagnosis is 29 years.
x = ×-3/4
because you hace the variable x and you do not know the number of fruit snacks he ate and you need to have the same variables to properly find the answer.
Answer:
B 24
Step-by-step explanation:
3/5 is 54°
1/3 is 30°
54-30 = 24
Answer:
The 95% confidence interval for the true proportion of university students who use laptop in class to take notes is (0.2839, 0.4161).
Step-by-step explanation:
The (1 - <em>α</em>)% confidence interval for population proportion <em>P</em> is:

The information provided is:
<em>x</em> = number of students who responded as"yes" = 70
<em>n</em> = sample size = 200
Confidence level = 95%
The formula to compute the sample proportion is:

The R codes for the construction of the 95% confidence interval is:
> x=70
> n=200
> p=x/n
> p
[1] 0.35
> s=sqrt((p*(1-p))/n)
> s
[1] 0.03372684
> E=qnorm(0.975)*s
> lower=p-E
> upper=p+E
> lower
[1] 0.2838966
> upper
[1] 0.4161034
Thus, the 95% confidence interval for the true proportion of university students who use laptop in class to take notes is (0.2839, 0.4161).