Answer:
x= maths error
Step-by-step explanation:
x² = -25
x=√-25
x= maths error
Its factors would be
(x+2)*(x-1)*(x+0)
x^2 +x -2
x^3 + 0 + x^2 + 0 -2x +0
Equation: x^3 + x^2 -2x
f(2) = 8 + 4 -4
2x^3 + 2x^2 -4x +0
f(2) = 16 + 8 -8
3x^3 + 3x^2 -6x +0
f(2) = 24 +12 -12
4x^3 + 4x^2 -8x +0
f(2) = 32 +16 -16
So, the equation is:
4x^3 + 4x^2 -8x = 0
Answer:
Step-by-step explanation:
The parent function here is y = log x, where 10 is the base.
The derivative of y = log x is dy/dx = (ln x) / ln 10.
The derivative of y = log (ax+b) is found in that manner, but additional steps are necessary: differentiate the argument ax + b:
The derivative with respect to 10 of log (ax + b) is:
dy/dx = [ 1 / (ax + b) ] / [ ln 10 ] *a, where a is the derivative of (ax + b).
Alternatively, we could express the answer as
dy/dx = [ a / (ax + b) ] / [ ln 10 ]
All your answers look good!