The easiest way is to graph it based upon the slope (m) and y-intercept (b), in the standard slope-intercept form: y = m (x) + b.
The line above intercepts the y-axis at y = -2, which is b. The slope (m) = rise/run = (y2-y1)/(x2-x1 ); so for the point (-4, 2) to (-6, 4) is:
(4-2)/(-6--4) = 2/(-6+4) = 2/-2 = -1.
So one form of the equation would be:
y = -1x - 2
Now the other form of an equation is point-slope: y-k = m (x-h), where the point is at (h, k)
and if we pick -5 for x (bc 5 it listed in 3 of the answers), the y at x=-5 looks like around +3
so we get: y-k = -1 (x--5)...
y-3 = -(x+5)... therefore D) is the correct answer:
A) Demand function
price (x) demand (D(x))
4 540
3.50 810
D - 540 810 - 540
----------- = -----------------
x - 4 3.50 - 4
D - 540
----------- = - 540
x - 4
D - 540 = - 540(x - 4)
D = -540x + 2160 + 540
D = 2700 - 540x
D(x) = 2700 - 540x
Revenue function, R(x)
R(x) = price * demand = x * D(x)
R(x) = x* (2700 - 540x) = 2700x - 540x^2
b) Profit, P(x)
profit = revenue - cost
P(x) = R(x) - 30
P(x) = [2700x - 540x^2] - 30
P(x) = 2700x - 540x^2 - 30
Largest possible profit => vertex of the parabola
vertex of 2700x - 540x^2 - 30
When you calculate the vertex you find x = 5 /2
=> P(x) = 3345
Answer: you should charge a log-on fee of $2.5 to have the largest profit, which is $3345.
Answer:
assume the formula is true for n is equal to k prove that result is true for n is equal to k + 1 hence result proves since the thorum is true for n is equal to 1 and n k + 1 is unit through a and
Answer:
89.2 is bigger
Step-by-step explanation: