1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rzqust [24]
3 years ago
9

explain step by step how to solve. please point out any similarities in the steps used for each question

Mathematics
1 answer:
Mamont248 [21]3 years ago
6 0
#1
m∠A=180 - 115 - 24 = 41°

By the law of sines:

b/sinB = a/sinA  ⇒  
b = (a*sinB)/sinA = (21*sin24°)/sin41° = (21*0.4067)/0.656 ≈ 13

c/sinC = a/sinA  ⇒  
c = (a*sinC)/sinA = (21*sin115°)/sin41° = (21*0.9063)/0.656 ≈ 29


#2
m∠C=180 - 119 - 27 = 34°

By the law of sines:

b/sinB = a/sinA  ⇒  
b = (a*sinB)/sinA = (13*sin119°)/sin27° = (13*0.8746)/0.454 ≈ 25

c/sinC = a/sinA  ⇒  
c = (a*sinC)/sinA = (13*sin34°)/sin27° = (13*0.5592)/0.454 ≈ 16


#3
m∠C=180 - 57 - 37 = 86°

By the law of sines:

c/sinC = a/sinA  ⇒  
c = (a*sinC)/sinA = (11*sin86°)/sin57° = (11*0.9976)/0.8387 ≈ 13.1
You might be interested in
What is equivalent decimal for 0.85
Alex_Xolod [135]

Answer:

17/20

Step-by-step explanation:

0.85 = 85/100 = 17/20

The number 0.85 can be written using the fraction 85/100 which is equal to 17/20 when reduced to lowest terms.

5 0
3 years ago
<img src="https://tex.z-dn.net/?f=prove%20that%5C%20%20%5Ctextless%20%5C%20br%20%2F%5C%20%20%5Ctextgreater%20%5C%20%5Cfrac%20%7B
inysia [295]

\large \bigstar \frak{ } \large\underline{\sf{Solution-}}

Consider, LHS

\begin{gathered}\rm \: \dfrac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

We know,

\begin{gathered}\boxed{\sf{  \:\rm \: {sec}^{2}x - {tan}^{2}x = 1 \: \: }} \\ \end{gathered}  \\  \\  \text{So, using this identity, we get} \\  \\ \begin{gathered}\rm \: = \:\dfrac { \tan \theta + \sec \theta - ( {sec}^{2}\theta - {tan}^{2}\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

We know,

\begin{gathered}\boxed{\sf{  \:\rm \: {x}^{2} - {y}^{2} = (x + y)(x - y) \: \: }} \\ \end{gathered}  \\

So, using this identity, we get

\begin{gathered}\rm \: = \:\dfrac { \tan \theta + \sec \theta - (sec\theta + tan\theta )(sec\theta - tan\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered}

can be rewritten as

\begin{gathered}\rm\:=\:\dfrac {(\sec \theta + tan\theta ) - (sec\theta + tan\theta )(sec\theta -tan\theta )} { \tan \theta - \sec \theta + 1 } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac {(\sec \theta + tan\theta ) \: \cancel{(1 - sec\theta + tan\theta )}} { \cancel{ \tan \theta - \sec \theta + 1} } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:sec\theta + tan\theta \\\end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac{1}{cos\theta } + \dfrac{sin\theta }{cos\theta } \\ \end{gathered} \\  \\  \\\begin{gathered}\rm \: = \:\dfrac{1 + sin\theta }{cos\theta } \\ \end{gathered}

<h2>Hence,</h2>

\begin{gathered} \\ \rm\implies \:\boxed{\sf{  \:\rm \: \dfrac { \tan \theta + \sec \theta - 1 } { \tan \theta - \sec \theta + 1 } = \:\dfrac{1 + sin\theta }{cos\theta } \: \: }} \\ \\ \end{gathered}

\rule{190pt}{2pt}

5 0
2 years ago
Which statements describe America’s workforce during World War II? Check all that apply.
soldier1979 [14.2K]

Step-by-step explanation:

hundreds of thousands of women signed up for the US military

5 0
3 years ago
Read 2 more answers
The value of y varies directly as x with a constant variation of 2 what is the value of y when x is 6?
sp2606 [1]

Answer:

The value of y is 12

Step-by-step explanation:

y∝x

y = kx

y = 2x

when x = 6, y = 2(6)

= 12

(Correct me if i am wrong)

8 0
3 years ago
Evaluate the double integral ∬R(2x−y)dA, where R is the region in the first quadrant enclosed by the circle x^2+y^ 2= 4 and the
frez [133]

Answer:

Step-by-step explanation:

We are to integrate the function

f(x,y) = 2x-y

over the area enclosed by the circle

x^2+y^2 =4 \\x=0\\y=x

Convert into polar coordinates

dA=rdr dt

x=rcost and y = rsint

Since the lines are x=0 and y=x we find that t varies from 0 to pi/4

2x-y =2rsint-rcost

Double integral will become now

\int\limits^\frac{\pi}{4} _0 \int\limits^2_0 2rcost -rsint dt\\=\int\limits^\frac{\pi}{4} _0 r^2 cost -r^2sint /2 dt\\= r^2 sint - r^2 cost/2

(since variables are independent here)

Substitute for r and t

4 sin pi/4 -2 cospi/4

= \sqrt{2}

6 0
3 years ago
Other questions:
  • |4| |-4|, greater than, less than, or equal to?
    7·2 answers
  • Use partial quotients 6 divided by 258
    12·1 answer
  • (2x -1) -2x 4(1- x)<br> please help math hw need help
    6·1 answer
  • Fill in the blanks<br>a ---÷48=-1<br>​
    8·2 answers
  • Brett shaded 4/8 of a sheet of notebook paper. Aisha says he shaded 1/2 of the paper. Are the two fractions equivalent? if so, w
    10·1 answer
  • NEED HELP ASAP !!!! How many points need to be removed From this graph so that it will be a function ?
    8·2 answers
  • 0.34 times 10 with an exponet 3
    7·2 answers
  • The price of a gallon of milk increased from $5.50 to $7.50. Describe the price increase as a percent.​
    8·1 answer
  • find the least perfect square that is exactly divisible by each of the numbers 5 , 18 , 25 and 27 . ​
    14·1 answer
  • The sketches show the graphs y=-x^2+16 and y=7
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!