A number y<span> plus the cube monomial expressions and </span>cube roots<span> of whole </span><span>numbers</span>
Answer: (0,1)
Step-by-step explanation:
If
and
are two point son a coordinate plane and (x,y) dividing it in a ratio of m: n.
Then , the coordinates of (x,y) is given by :-


Given : On a coordinate plane, a line is drawn from point A to point B. Point A is at (2, - 3) and point B is at (- 4, 9).
Then , the x- and y- coordinates of point E, which partitions the directed line segment from A to B into a ratio of 1:2 :


Hence, the x- and y- coordinates of point E = (0,1)
Answer:
r = √98
Step-by-step explanation:
angle A and the diameter form an isosceles right triangle, with OA as the hypotenuse and r as the other sides. You can then make and solve an equation from the Pythagorean Theorem:
r^2 + r^2 = 14^2
2r^2 = 14^2
2r^2 = 196
r^2 = 98
r = √98
Answer:
Radius of convergence of power series is 
Step-by-step explanation:
Given that:
n!! = 1⋅3⋅5⋅⋅⋅⋅(n−2)⋅n n is odd
n!! = 2⋅4⋅6⋅⋅⋅⋅(n−2)⋅n n is even
(-1)!! = 0!! = 1
We have to find the radius of convergence of power series:
![\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}](8x+6)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}]2^{n}(4x+3)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}](x+\frac{3}{4})^{n}\\](https://tex.z-dn.net/?f=%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5B%5Cfrac%7B8%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B2%5E%7Bn%7D%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D%288x%2B6%29%5E%7Bn%7D%5C%5C%5C%5C%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5B%5Cfrac%7B8%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B2%5E%7Bn%7D%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D2%5E%7Bn%7D%284x%2B3%29%5E%7Bn%7D%5C%5C%5C%5C%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5B%5Cfrac%7B8%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D%28x%2B%5Cfrac%7B3%7D%7B4%7D%29%5E%7Bn%7D%5C%5C)
Power series centered at x = a is:

![\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}](8x+6)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}]2^{n}(4x+3)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}4^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}](x+\frac{3}{4})^{n}\\](https://tex.z-dn.net/?f=%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5B%5Cfrac%7B8%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B2%5E%7Bn%7D%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D%288x%2B6%29%5E%7Bn%7D%5C%5C%5C%5C%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5B%5Cfrac%7B8%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B2%5E%7Bn%7D%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D2%5E%7Bn%7D%284x%2B3%29%5E%7Bn%7D%5C%5C%5C%5C%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5B%5Cfrac%7B8%5E%7Bn%7D4%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D%28x%2B%5Cfrac%7B3%7D%7B4%7D%29%5E%7Bn%7D%5C%5C)
![a_{n}=[\frac{8^{n}4^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}]\\\\a_{n+1}=[\frac{8^{n+1}4^{n+1}n!(3(n+1)+3)!(2(n+1))!!}{[(n+1+9)!]^{3}(4(n+1)+3)!!}]\\\\a_{n+1}=[\frac{8^{n+1}4^{n+1}(n+1)!(3n+6)!(2n+2)!!}{[(n+10)!]^{3}(4n+7)!!}]](https://tex.z-dn.net/?f=a_%7Bn%7D%3D%5B%5Cfrac%7B8%5E%7Bn%7D4%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D%5C%5C%5C%5Ca_%7Bn%2B1%7D%3D%5B%5Cfrac%7B8%5E%7Bn%2B1%7D4%5E%7Bn%2B1%7Dn%21%283%28n%2B1%29%2B3%29%21%282%28n%2B1%29%29%21%21%7D%7B%5B%28n%2B1%2B9%29%21%5D%5E%7B3%7D%284%28n%2B1%29%2B3%29%21%21%7D%5D%5C%5C%5C%5Ca_%7Bn%2B1%7D%3D%5B%5Cfrac%7B8%5E%7Bn%2B1%7D4%5E%7Bn%2B1%7D%28n%2B1%29%21%283n%2B6%29%21%282n%2B2%29%21%21%7D%7B%5B%28n%2B10%29%21%5D%5E%7B3%7D%284n%2B7%29%21%21%7D%5D)
Applying the ratio test:
![\frac{a_{n}}{a_{n+1}}=\frac{[\frac{32^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}]}{[\frac{32^{n+1}(n+1)!(3n+6)!(2n+2)!!}{[(n+10)!]^{3}(4n+7)!!}]}](https://tex.z-dn.net/?f=%5Cfrac%7Ba_%7Bn%7D%7D%7Ba_%7Bn%2B1%7D%7D%3D%5Cfrac%7B%5B%5Cfrac%7B32%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D%7D%7B%5B%5Cfrac%7B32%5E%7Bn%2B1%7D%28n%2B1%29%21%283n%2B6%29%21%282n%2B2%29%21%21%7D%7B%5B%28n%2B10%29%21%5D%5E%7B3%7D%284n%2B7%29%21%21%7D%5D%7D)

Applying n → ∞

The numerator as well denominator of
are polynomials of fifth degree with leading coefficients:

The worth of the car in 10 years is $1,831.67 using an exponential equation approach.
What is an exponential equation?
An exponential equation is the one with exponents such X^3(the 3 is the exponent)
The exponential equation required here is the one where the future value would be lower than current value because the car reduces in value year-in-year-out.
FV=PV*(1-r)^N
FV=future worth of the car
PV=today's value=$25,000
r=depreciation rate=-23%
N=number of years=10
The fact that r is negative means the car is depreciating not appreciating.
FV=$25,000*(1-23%)^10
FV=$1,831.67
Find further explanation on exponential equation below in the link:
brainly.com/question/11832081
#SPJ1